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Chapter 1

Introduction

1.1 Features at a glance

Gretl is an econometrics package, including a shared library, a command-line client program and a
graphical user interface.

User-friendly Gretl offers an intuitive user interface; it is very easy to get up and running with
econometric analysis. Thanks to its association with the econometrics textbooks by Ramu
Ramanathan, Jeffrey Wooldridge, and James Stock and Mark Watson, the package offers many
practice data files and command scripts. These are well annotated and accessible. Two other
useful resources for gretl users are the available documentation and the gretl-users mailing
list.

Flexible You can choose your preferred point on the spectrum from interactive point-and-click to
complex scripting, and can easily combine these approaches.

Cross-platform Gretl’s “home” platform is Linux but it is also available for MS Windows and Mac
OS X, and should work on any unix-like system that has the appropriate basic libraries (see
Appendix B).

Open source The full source code for gretl is available to anyone who wants to critique it, patch it,
or extend it. See Appendix B.

Sophisticated Gretl offers a full range of least-squares based estimators, either for single equations
and for systems, including vector autoregressions and vector error correction models. Sev-
eral specific maximum likelihood estimators (e.g. probit, ARIMA, GARCH) are also provided
natively; more advanced estimation methods can be implemented by the user via generic
maximum likelihood or nonlinear GMM.

Extensible Users can enhance gretl by writing their own functions and procedures in gretl’s script-
ing language, which includes a wide range of matrix functions.

Accurate Gretl has been thoroughly tested on several benchmarks, among which the NIST refer-
ence datasets. See Appendix C.

Internet ready Gretl can fetch materials such databases, collections of textbook datafiles and add-
on packages over the internet.

International Gretl will produce its output in English, French, Italian, Spanish, Polish, Portuguese,
German, Basque, Turkish, Russian, Albanian or Greek depending on your computer’s native
language setting.

1.2 Acknowledgements

The gretl code base originally derived from the program ESL (“Econometrics Software Library”),
written by Professor Ramu Ramanathan of the University of California, San Diego. We are much in
debt to Professor Ramanathan for making this code available under the GNU General Public Licence
and for helping to steer gretl’s early development.


http://gretl.sourceforge.net/lists.html
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We are also grateful to the authors of several econometrics textbooks for permission to package for
gretl various datasets associated with their texts. This list currently includes William Greene, au-
thor of Econometric Analysis; Jeffrey Wooldridge (Introductory Econometrics: A Modern Approach);
James Stock and Mark Watson (Introduction to Econometrics); Damodar Gujarati (Basic Economet-
rics); Russell Davidson and James MacKinnon (Econometric Theory and Methods); and Marno Ver-
beek (A Guide to Modern Econometrics).

GARCH estimation in gretl is based on code deposited in the archive of the Journal of Applied
Econometrics by Professors Fiorentini, Calzolari and Panattoni, and the code to generate p-values
for Dickey-Fuller tests is due to James MacKinnon. In each case we are grateful to the authors for
permission to use their work.

With regard to the internationalization of gretl, thanks go to Ignacio Diaz-Emparanza (Spanish),
Michel Robitaille and Florent Bresson (French), Cristian Rigamonti (Italian), Tadeusz Kufel and Pawel
Kufel (Polish), Markus Hahn and Sven Schreiber (German), Hélio Guilherme and Henrique Andrade
(Portuguese), Susan Orbe (Basque), Talha Yalta (Turkish) and Alexander Gedranovich (Russian).

Gretl has benefitted greatly from the work of numerous developers of free, open-source software:
for specifics please see Appendix B. Our thanks are due to Richard Stallman of the Free Software
Foundation, for his support of free software in general and for agreeing to “adopt” gretl as a GNU
program in particular.

Many users of gretl have submitted useful suggestions and bug reports. In this connection par-
ticular thanks are due to Ignacio Diaz-Emparanza, Tadeusz Kufel, Pawel Kufel, Alan Isaac, Cri
Rigamonti, Sven Schreiber, Talha Yalta, Andreas Rosenblad, and Dirk Eddelbuettel, who maintains
the gretl package for Debian GNU/Linux.

1.3 Installing the programs

Linux

On the Linux! platform you have the choice of compiling the gretl code yourself or making use of a
pre-built package. Building gretl from the source is necessary if you want to access the development

version or customize gretl to your needs, but this takes quite a few skills; most users will want to
go for a pre-built package.

Some Linux distributions feature gretl as part of their standard offering: Debian, Ubuntu and Fe-
dora, for example. If this is the case, all you need to do is install gretl through your package
manager of choice. In addition the gretl webpage at http://gretl.sourceforge.net offers a
“generic” package in rpm format for modern Linux systems.

If you prefer to compile your own (or are using a unix system for which pre-built packages are not
available), instructions on building gretl can be found in Appendix B.

MS Windows

The MS Windows version comes as a self-extracting executable. Installation is just a matter of
downloading gret1_install.exe and running this program. You will be prompted for a location
to install the package.

Mac OS X

The Mac version comes as a gzipped disk image. Installation is a matter of downloading the image
file, opening it in the Finder, and dragging Gret1.app to the Applications folder. However, when
installing for the first time two prerequisite packages must be put in place first; details are given
on the gretl website.

IIn this manual we use “Linux” as shorthand to refer to the GNU/Linux operating system. What is said herein about
Linux mostly applies to other unix-type systems too, though some local modifications may be needed.
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Part I

Running the program
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Getting started

2.1 Let’s run a regression

This introduction is mostly angled towards the graphical client program; please see Chapter 51
below and the Gretl Command Reference for details on the command-line program, gretlcli.

You can supply the name of a data file to open as an argument to gretl, but for the moment let’s
not do that: just fire up the program.! You should see a main window (which will hold information
on the data set but which is at first blank) and various menus, some of them disabled at first.

What can you do at this point? You can browse the supplied data files (or databases), open a data
file, create a new data file, read the help items, or open a command script. For now let’s browse the
supplied data files. Under the File menu choose “Open data, Sample file”. A second notebook-type
window will open, presenting the sets of data files supplied with the package (see Figure 2.1). Select
the first tab, “Ramanathan”. The numbering of the files in this section corresponds to the chapter
organization of Ramanathan (2002), which contains discussion of the analysis of these data. The
data will be useful for practice purposes even without the text.

£0ax

4 Em | Greene | Gujarati | Penn World Table Ramanathan | Stock-Watson |’

gretl: data files

File |Summar)|r | =
data2-1 SAT scores

data2-2 College and high school GPAs

data2-3 Unemployment, inflation and wages

data3-1 House prices and sqft

data3-2 Income and health care spending

data3-3 Patents and R&D expenditures

data3-4 Gross Income and Taxes by States

data3-5 Sealing compound shipment data

data3-7 Toyota station wagon repairs

data3-8 Tuition and salary gain for MBAs

data3-9 Return on equity and assets |

Figure 2.1: Practice data files window

If you select a row in this window and click on “Info” this opens a window showing information on
the data set in question (for example, on the sources and definitions of the variables). If you find
a file that is of interest, you may open it by clicking on “Open”, or just double-clicking on the file
name. For the moment let’s open data3-6.

= |n gretl windows containing lists, double-clicking on a line launches a default action for the associated list
entry: e.g. displaying the values of a data series, opening a file.

IFor convenience we refer to the graphical client program simply as gretl in this manual. Note, however, that the
specific name of the program differs according to the computer platform. On Linux it is called gret1_x11 while on
MS Windows it is gretl.exe. On Linux systems a wrapper script named gret] is also installed — see also the Gretl
Command Reference.
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This file contains data pertaining to a classic econometric “chestnut”, the consumption function.
The data window should now display the name of the current data file, the overall data range and
sample range, and the names of the variables along with brief descriptive tags — see Figure 2.2.

File Tools Data View Add Sample Variable Model ﬂelp|
data3-6.gdt

ID # |Variab|e name |De5criptive label |

0 const auto-generated constant
Personal consumption expenditures (1992 dollars)
2 Yt Per capita disposable personal income {1992 dollars)

Annual: Full range 1959 - 1994

W2rEaeRBEL 2B

Figure 2.2: Main window, with a practice data file open

OK, what can we do now? Hopefully the various menu options should be fairly self explanatory. For
now we’ll dip into the Model menu; a brief tour of all the main window menus is given in Section 2.3
below.

Gretl’s Model menu offers numerous various econometric estimation routines. The simplest and

most standard is Ordinary Least Squares (OLS). Selecting OLS pops up a dialog box calling for a
model specification—see Figure 2.3.

gretl: specify model

OLs

Dependent variable

Ct Ct
L

Set as default

Independent variables

% |
_& |

[] Robust standard errors  configure
lags...

I Help ‘ £ Clear

%gancel

<Jok |

Figure 2.3: Model specification dialog

To select the dependent variable, highlight the variable you want in the list on the left and click
the arrow that points to the Dependent variable slot. If you check the “Set as default” box this
variable will be pre-selected as dependent when you next open the model dialog box. Shortcut:
double-clicking on a variable on the left selects it as dependent and also sets it as the default. To
select independent variables, highlight them on the left and click the green arrow (or right-click the



Chapter 2. Getting started 6

highlighted variable); to remove variables from the selected list, use the rad arrow. To select several
variable in the list box, drag the mouse over them; to select several non-contiguous variables, hold
down the Ctr1 key and click on the variables you want. To run a regression with consumption as
the dependent variable and income as independent, click Ct into the Dependent slot and add Yt to
the Independent variables list.

2.2 Estimation output

Once you've specified a model, a window displaying the regression output will appear. The output
is reasonably comprehensive and in a standard format (Figure 2.4).

[m] gretl: model 1

File Edit Tests Save Graphs Analysis LaTeX |

Model 1: OLS, using obserwations 1959-1994 (T = 36)
Dependent variable: Ct

coefficient std. error t-ratio p-value
const —384.105 151.330 —-2.538 0.0159 Aok
Yt 0.932738 0.0106966 87.20 1. 4de-41 *+*

Mean dependent var 12490.89 S.D. dependent var  2940.028

Sum squared resid 1346750 S.E. of regression 199. 0234
R-squared 0.995548 Adjusted R-sguared ©.995417
F(1, 34) 7603.702 P-value(F) 1.44e-41
Log-likelihood -240.6161 Akaike criterion 485.2323
Schwarz criterion 488.3993 Hannan - Quinn 486.3377
rho 0.768301 Durbin-Watson 0.513696

Figure 2.4: Model output window

The output window contains menus that allow you to inspect or graph the residuals and fitted
values, and to run various diagnostic tests on the model.

For most models there is also an option to print the regression output in KIgX format. See Chap-
ter 43 for details.

To import gretl output into a word processor, you may copy and paste from an output window,
using its Edit menu (or Copy button, in some contexts) to the target program. Many (not all) gretl
windows offer the option of copying in RTF (Microsoft’s “Rich Text Format”) or as KIgX. If you are
pasting into a word processor, RTF may be a good option because the tabular formatting of the
output is preserved.? Alternatively, you can save the output to a (plain text) file then import the
file into the target program. When you finish a gretl session you are given the option of saving all
the output from the session to a single file.

Note that on the gnome desktop and under MS Windows, the File menu includes a command to
send the output directly to a printer.

1= When pasting or importing plain text gretl output into a word processor, select a monospaced or typewriter-
style font (e.g. Courier) to preserve the output’s tabular formatting. Select a small font (10-point Courier
should do) to prevent the output lines from being broken in the wrong place.

2Note that when you copy as RTF under MS Windows, Windows will only allow you to paste the material into ap-
plications that “understand” RTF. Thus you will be able to paste into MS Word, but not into notepad. Note also that
there appears to be a bug in some versions of Windows, whereby the paste will not work properly unless the “target”
application (e.g. MS Word) is already running prior to copying the material in question.
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2.3 The main window menus

Reading left to right along the main window’s menu bar, we find the File, Tools, Data, View, Add,
Sample, Variable, Model and Help menus.

File

Tools Data View Add Sample Variable Model Help

¢ File menu

Open data: Open a native gretl data file or import from other formats. See Chapter 4.

Append data: Add data to the current working data set, from a gretl data file, a comma-
separated values file or a spreadsheet file.

Save data: Save the currently open native gretl data file.

Save data as: Write out the current data set in native format, with the option of using
gzip data compression. See Chapter 4.

Export data: Write out the current data set in Comma Separated Values (CSV) format, or
the formats of GNU R or GNU Octave. See Chapter 4 and also Appendix D.

Send to: Send the current data set as an e-mail attachment.

New data set: Allows you to create a blank data set, ready for typing in values or for
importing series from a database. See below for more on databases.

Clear data set: Clear the current data set out of memory. Generally you don’t have to do
this (since opening a new data file automatically clears the old one) but sometimes it’s
useful.

Working directory: Change the current working directory (or “workdir”) and specify re-
lated options. For an explanation of the role of the workdir click the Help button in the
dialog window which is presented, or refer to the documentation of the set command
with the workdir option in the command reference.

Script files: A “script” is a file containing a sequence of gretl commands. This item
contains entries that let you open a script you have created previously (“User file”), open
a sample script, or open an editor window in which you can create a new script.

Session files: A “session” file contains a snapshot of a previous gretl session, including
the data set used and any models or graphs that you saved. Under this item you can
open a saved session or save the current session.

Databases: Allows you to browse various large databases, either on your own computer
or, if you are connected to the internet, on the gretl database server. See Section 4.2 for
details.

Function packages: Manage user-contributed function packages that extend gretl’s capa-
bilities. To learn more about such packages written in gretl’s built-in matrix and scripting
language “hansl”, please refer to the “Packages” entry in Help menu.

Resource from addon: Access example scripts and datafiles that are shipped as part of
gretl’s official “addons”. (Addons are function packages that are more tightly integrated
with the gretl program than standard user-contributed packages.)

Exit: Quit the program. You'll be prompted to save any unsaved work.

e Tools menu

Statistical tables: Look up critical values for commonly used distributions (normal or
Gaussian, t, chi-square, F and Durbin-Watson).

P-value finder: Look up p-values from the Gaussian, t, chi-square, F, gamma, binomial or
Poisson distributions. See also the pvalue command in the Gretl Command Reference.
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- Distribution graphs: Produce graphs of various probability distributions. In the resulting
graph window, the pop-up menu includes an item “Add another curve”, which enables
you to superimpose a further plot (for example, you can draw the t distribution with
various different degrees of freedom).

- Test statistic calculator: Calculate test statistics and p-values for a range of common hy-
pothesis tests (population mean, variance and proportion; difference of means, variances
and proportions).

- Nonparametric tests: Calculate test statistics for various nonparametric tests (Sign test,
Wilcoxon rank sum test, Wilcoxon signed rank test, Runs test).

- Seed for random numbers: Set the seed for the random number generator (by default
this is set based on the system time when the program is started).

- Command log: Open a window containing a record of the commands executed so far.

- Gretl console: Open a “console” window into which you can type commands as you would
using the command-line program, gretlcli (as opposed to using point-and-click).

- Start Gnu R: Start R (if it is installed on your system), and load a copy of the data set
currently open in gretl. See Appendix D.

- Sort variables: Rearrange the listing of variables in the main window, either by ID number
or alphabetically by name.

- Function packages: Handles “function packages” (see Section 14.5), which allow you to
access functions written by other users and share the ones written by you.

- NIST test suite: Check the numerical accuracy of gretl against the reference results for
linear regression made available by the (US) National Institute of Standards and Technol-
ogy.

- Preferences: Set the paths to various files gretl needs to access. Choose the font in which
gretl displays text output. Activate or suppress gretl’s messaging about the availability
of program updates, and so on. See the Gretl Command Reference for further details.

e Data menu
- Select all: Several menu items act upon those variables that are currently selected in the
main window. This item lets you select all the variables.

- Display values: Pops up a window with a simple (not editable) printout of the values of
the selected variable or variables.

- Edit values: Opens a spreadsheet window where you can edit the values of the selected
variables.

- Add observations: Gives a dialog box in which you can choose a number of observations
to add at the end of the current dataset; for use with forecasting.

- Remove extra observations: Active only if extra observations have been added automati-
cally in the process of forecasting; deletes these extra observations.

- Read info, Edit info: “Read info” just displays the summary information for the current
data file; “Edit info” allows you to make changes to it (if you have permission to do so).

- Print description: Opens a window containing a full account of the current dataset, in-
cluding the summary information and any specific information on each of the variables.

- Add case markers: Prompts for the name of a text file containing “case markers” (short
strings identifying the individual observations) and adds this information to the data set.
See Chapter 4.

- Remove case markers: Active only if the dataset has case markers identifying the obser-
vations; removes these case markers.
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Dataset structure: invokes a series of dialog boxes which allow you to change the struc-
tural interpretation of the current dataset. For example, if data were read in as a cross
section you can get the program to interpret them as time series or as a panel. See also
section 4.4.

Compact data: For time-series data of higher than annual frequency, gives you the option
of compacting the data to a lower frequency, using one of four compaction methods
(average, sum, start of period or end of period).

Expand data: For time-series data, gives you the option of expanding the data to a higher
frequency.

Transpose data: Turn each observation into a variable and vice versa (or in other words,
each row of the data matrix becomes a column in the modified data matrix); can be useful
with imported data that have been read in “sideways”.

e View menu

Icon view: Opens a window showing the content of the current session as a set of icons;
see section 3.4.

Graph specified vars: Gives a choice between a time series plot, a regular X-Y scatter
plot, an X-Y plot using impulses (vertical bars), an X-Y plot “with factor separation” (i.e.
with the points colored differently depending to the value of a given dummy variable),
boxplots, and a 3-D graph. Serves up a dialog box where you specify the variables to
graph. See Chapter 6 for details.

Multiple graphs: Allows you to compose a set of up to six small graphs, either pairwise
scatter-plots or time-series graphs. These are displayed together in a single window.

Summary statistics: Shows a full set of descriptive statistics for the variables selected in
the main window.

Correlation matrix: Shows the pairwise correlation coefficients for the selected variables.

Cross Tabulation: Shows a cross-tabulation of the selected variables. This works only if
at least two variables in the data set have been marked as discrete (see Chapter 12).

Principal components: Produces a Principal Components Analysis for the selected vari-
ables.

Mahalanobis distances: Computes the Mahalanobis distance of each observation from
the centroid of the selected set of variables.

Cross-correlogram: Computes and graphs the cross-correlogram for two selected vari-
ables.

e Add menu Offers various standard transformations of variables (logs, lags, squares, etc.) that
you may wish to add to the data set. Also gives the option of adding random variables, and
(for time-series data) adding seasonal dummy variables (e.g. quarterly dummy variables for
quarterly data).

e Sample menu

Set range: Select a different starting and/or ending point for the current sample, within
the range of data available.

Restore full range: self-explanatory.

Define, based on dummy: Given a dummy (indicator) variable with values O or 1, this
drops from the current sample all observations for which the dummy variable has value
0.

Restrict, based on criterion: Similar to the item above, except that you don’t need a pre-
defined variable: you supply a Boolean expression (e.g. sqft > 1400) and the sample is
restricted to observations satisfying that condition. See the entry for genr in the Gretl
Command Reference for details on the Boolean operators that can be used.
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- Random sub-sample: Draw a random sample from the full dataset.

- Drop all obs with missing values: Drop from the current sample all observations for
which at least one variable has a missing value (see Section 4.6).

- Count missing values: Give a report on observations where data values are missing. May
be useful in examining a panel data set, where it’s quite common to encounter missing
values.

- Set missing value code: Set a numerical value that will be interpreted as “missing” or “not
available”. This is intended for use with imported data, when gretl has not recognized
the missing-value code used.

e Variable menu Most items under here operate on a single variable at a time. The “active”
variable is set by highlighting it (clicking on its row) in the main data window. Most options
will be self-explanatory. Note that you can rename a variable and can edit its descriptive label
under “Edit attributes”. You can also “Define a new variable” via a formula (e.g. involving
some function of one or more existing variables). For the syntax of such formulae, look at the
online help for “Generate variable syntax” or see the genr command in the Gretl Command
Reference. One simple example:

foo = x1 * x2

will create a new variable foo as the product of the existing variables x1 and x2. In these
formulae, variables must be referenced by name, not number.

Model menu For details on the various estimators offered under this menu please consult the
Gretl Command Reference. Also see Chapter 25 regarding the estimation of nonlinear models.

Help menu Please use this as needed! It gives details on the syntax required in various dialog
entries.

2.4 Keyboard shortcuts

When working in the main gretl window, some common operations may be performed using the

keyboard, as shown in the table below.

Return Opens a window displaying the values of the currently selected variables: it is
the same as selecting “Data, Display Values”.

Delete Pressing this key has the effect of deleting the selected variables. A confirma-
tion is required, to prevent accidental deletions.

e Has the same effect as selecting “Edit attributes” from the “Variable” menu.

F2 Same as “e”. Included for compatibility with other programs.

g Has the same effect as selecting “Define new variable” from the “Variable”
menu (which maps onto the genr command).

h Opens a help window for gretl commands.

F1 Same as “h”. Included for compatibility with other programs.

r Refreshes the variable list in the main window.

t Graphs the selected variable; a line graph is used for time-series datasets,

whereas a distribution plot is used for cross-sectional data.

2.5 The gretl toolbar

At the bottom left of the main window sits the toolbar.



Chapter 2. Getting started 11
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The icons have the following functions, reading from left to right:

W

. Launch a calculator program. A convenience function in case you want quick access to a

calculator when you're working in gretl. The default program is calc.exe under MS Win-
dows, or xcalc under the X window system. You can change the program under the “Tools,
Preferences, General” menu, “Programs” tab.

Start a new script. Opens an editor window in which you can type a series of commands to be
sent to the program as a batch.

Open the gretl console. A shortcut to the “Gretl console” menu item (Section 2.3 above).

Open the session icon window.

5. Open a window displaying available gretl function packages.

10.

Open this manual in PDF format.

Open the help item for script commands syntax (i.e. a listing with details of all available
commands).

Open the dialog box for defining a graph.
Open the dialog box for estimating a model using ordinary least squares.

Open a window listing the sample datasets supplied with gretl, and any other data file collec-
tions that have been installed.
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Modes of working

3.1 Command scripts

As you execute commands in gretl, using the GUI and filling in dialog entries, those commands are
recorded in the form of a “script” or batch file. Such scripts can be edited and re-run, using either
gretl or the command-line client, gretlcli.

To view the current state of the script at any point in a gretl session, choose “Command log” under
the Tools menu. This log file is called session.inp and it is overwritten whenever you start a new
session. To preserve it, save the script under a different name. Script files will be found most easily,
using the GUI file selector, if you name them with the extension “.inp”.

To open a script you have written independently, use the “File, Script files” menu item; to create a
script from scratch use the “File, Script files, New script” item or the “new script” toolbar button.
In either case a script window will open (see Figure 3.1).

B8f0AWE X
# Replicate Table 1, "Estimation of the Textbook :Z

# Solow model," in Mankiw, Romer and Weil, QJE 1992
open mrw.gdt

genr lny log(gdp85)

genr ngd 0.05 + (popgrow/100.0)

genr lngd = log(ngd)

genr linv = log(inv/100.0)

# generate variable for testing 5Solow restriction
genr x3 = linw - lngd

# set sample to non-oil producing countries

supl nonoil --dummy

modell =- ols lny const linv lngd =
genr essu = $ess

genr dful = $df

# restricted regression

ols lny const x3

genr Fl1 = ($ess - essu)/(essu/dful)

# set sample to the "better data" countries
smpl intermed --dummy --replace

model?2 =- ols lny ceonst linv lngd

genr essu = $ess

genr dfu2 = $df Ad|

Figure 3.1: Script window, editing a command file

The toolbar at the top of the script window offers the following functions (left to right): (1) Save
the file; (2) Save the file under a specified name; (3) Print the file (this option is not available on all
platforms); (4) Execute the commands in the file; (5) Copy selected text; (6) Paste the selected text;
(7) Find and replace text; (8) Undo the last Paste or Replace action; (9) Help (if you place the cursor
in a command word and press the question mark you will get help on that command); (10) Close
the window.

When you execute the script, by clicking on the Execute icon or by pressing Ctrl-r, all output is
directed to a single window, where it can be edited, saved or copied to the clipboard. To learn
more about the possibilities of scripting, take a look at the gretl Help item “Command reference,”

12
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or start up the command-line program gretlcli and consult its help, or consult the Gretl Command
Reference.

If you run the script when part of it is highlighted, gretl will only run that portion. Moreover, if you
want to run just the current line, you can do so by pressing Ctrl-Enter.!

Clicking the right mouse button in the script editor window produces a pop-up menu. This gives
you the option of executing either the line on which the cursor is located, or the selected region of
the script if there’s a selection in place. If the script is editable, this menu also gives the option of
adding or removing comment markers from the start of the line or lines.

The gretl package includes over 70 example scripts. Many of these relate to Ramanathan (2002),
but they may also be used as a free-standing introduction to scripting in gretl and to various points
of econometric theory. You can explore the example files under “File, Script files, Example scripts”
There you will find a listing of the files along with a brief description of the points they illustrate
and the data they employ. Open any file and run it to see the output. Note that long commands in
a script can be broken over two or more lines, using backslash as a continuation character.

You can, if you wish, use the GUI controls and the scripting approach in tandem, exploiting each
method where it offers greater convenience. Here are two suggestions.

e Open a data file in the GUI. Explore the data— generate graphs, run regressions, perform tests.
Then open the Command log, edit out any redundant commands, and save it under a specific
name. Run the script to generate a single file containing a concise record of your work.

o Start by establishing a new script file. Type in any commands that may be required to set
up transformations of the data (see the genr command in the Gretl Command Reference).
Typically this sort of thing can be accomplished more efficiently via commands assembled
with forethought rather than point-and-click. Then save and run the script: the GUI data
window will be updated accordingly. Now you can carry out further exploration of the data
via the GUI. To revisit the data at a later point, open and rerun the “preparatory” script first.

Scripts and data files

One common way of doing econometric research with gretl is as follows: compose a script; execute
the script; inspect the output; modify the script; run it again—with the last three steps repeated as
many times as necessary. In this context, note that when you open a data file this clears out most
of gretl’s internal state. It’s therefore probably a good idea to have your script start with an open
command: the data file will be re-opened each time, and you can be confident you’re getting “fresh”
results.

One further point should be noted. When you go to open a new data file via the graphical interface,
you are always prompted: opening a new data file will lose any unsaved work, do you really want
to do this? When you execute a script that opens a data file, however, you are not prompted. The
assumption is that in this case you’re not going to lose any work, because the work is embodied
in the script itself (and it would be annoying to be prompted at each iteration of the work cycle
described above).

This means you should be careful if you’ve done work using the graphical interface and then decide
to run a script: the current data file will be replaced without any questions asked, and it’s your
responsibility to save any changes to your data first.

LThis feature is not unique to gretl; other econometric packages offer the same facility. However, experience shows
that while this can be remarkably useful, it can also lead to writing dinosaur scripts that are never meant to be executed
all at once, but rather used as a chaotic repository to cherry-pick snippets from. Since gretl allows you to have several
script windows open at the same time, you may want to keep your scripts tidy and reasonably small.
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3.2 Saving script objects

When you estimate a model using point-and-click, the model results are displayed in a separate
window, offering menus which let you perform tests, draw graphs, save data from the model, and
so on. Ordinarily, when you estimate a model using a script you just get a non-interactive printout
of the results. You can, however, arrange for models estimated in a script to be “captured”, so that
you can examine them interactively when the script is finished. Here is an example of the syntax
for achieving this effect:

Modell <- ols Ct 0 Yt

That is, you type a name for the model to be saved under, then a back-pointing “assignment arrow”,
then the model command. The assignment arrow is composed of the less-than sign followed by a
dash; it must be separated by spaces from both the preceding name and the following command.
The name for a saved object may include spaces, but in that case it must be wrapped in double
quotes:

"Model 1" <- ols Ct 0 Yt

Models saved in this way will appear as icons in the gretl icon view window (see Section 3.4) after
the script is executed. In addition, you can arrange to have a named model displayed (in its own
window) automatically as follows:

Modell.show
Again, if the name contains spaces it must be quoted:
"Model 1".show

The same facility can be used for graphs. For example the following will create a plot of Ct against
Yt, save it under the name “CrossPlot” (it will appear under this name in the icon view window),
and have it displayed:

CrossPlot <- gnuplot Ct Yt
CrossPlot.show

You can also save the output from selected commands as named pieces of text (again, these will
appear in the session icon window, from where you can open them later). For example this com-
mand sends the output from an augmented Dickey-Fuller test to a “text object” named ADF1 and
displays it in a window:

ADF1 <- adf 2 x1
ADF1.show

Objects saved in this way (whether models, graphs or pieces of text output) can be destroyed using
the command . free appended to the name of the object, as in ADF1. free.

3.3 The gretl console

A further option is available for your computing convenience. Under gretl’s “Tools” menu you will
find the item “Gretl console” (there is also an “open gretl console” button on the toolbar in the
main window). This opens up a window in which you can type commands and execute them one
by one (by pressing the Enter key) interactively. This is essentially the same as gretlcli’s mode of
operation, except that the GUI is updated based on commands executed from the console, enabling
you to work back and forth as you wish.
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In the console, you have “command history”; that is, you can use the up and down arrow keys to
navigate the list of command you have entered to date. You can retrieve, edit and then re-enter a
previous command.

In console mode, you can create, display and free objects (models, graphs or text) aa described
above for script mode.

3.4 The Session concept

Gretl offers the idea of a “session” as a way of keeping track of your work and revisiting it later.
The basic idea is to provide an iconic space containing various objects pertaining to your current
working session (see Figure 3.2). You can add objects (represented by icons) to this space as you
go along. If you save the session, these added objects should be available again if you re-open the
session later.

gretl: current session

[ Hs
Data info Data set Notes Summary
[ B &N
[P
Correlations Model table Graph page Session
ok
Model 1 Graph 1

Figure 3.2: Icon view: one model and one graph have been added to the default icons

If you start gretl and open a data set, then select “Icon view” from the View menu, you should see
the basic default set of icons: these give you quick access to information on the data set (if any),
correlation matrix (“Correlations”) and descriptive summary statistics (“Summary”). All of these
are activated by double-clicking the relevant icon. The “Data set” icon is a little more complex:
double-clicking opens up the data in the built-in spreadsheet, but you can also right-click on the
icon for a menu of other actions.

To add a model to the Icon view, first estimate it using the Model menu. Then pull down the File
menu in the model window and select “Save to session as icon...” or “Save as icon and close”.
Simply hitting the S key over the model window is a shortcut to the latter action.

To add a graph, first create it (under the View menu, “Graph specified vars”, or via one of gretl’s
other graph-generating commands). Click on the graph window to bring up the graph menu, and
select “Save to session as icon”.

Once a model or graph is added its icon will appear in the Icon view window. Double-clicking on the
icon redisplays the object, while right-clicking brings up a menu which lets you display or delete
the object. This popup menu also gives you the option of editing graphs.

The model table

In econometric research it is common to estimate several models with a common dependent
variable —the models differing in respect of which independent variables are included, or per-
haps in respect of the estimator used. In this situation it is convenient to present the regression
results in the form of a table, where each column contains the results (coefficient estimates and
standard errors) for a given model, and each row contains the estimates for a given variable across
the models. Note that some estimation methods are not compatible with the straightforward model
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table format, therefore gretl will not let those models be added to the model table. These meth-
ods include non-linear least squares (n1s), generic maximum-likelihood estimators (mle), generic
GMM (gmm), dynamic panel models (dpanel), interval regressions (intreg), bivariate probit models
(biprobit), AR(IMA models (arima or arma), and (G)ARCH models (garch and arch).

In the Icon view window gretl provides a means of constructing such a table (and copying it in plain
text, KTgX or Rich Text Format). The procedure is outlined below. (The model table can also be built
non-interactively, in script mode — see the entry for modeltab in the Gretl Command Reference.)

1. Estimate a model which you wish to include in the table, and in the model display window,
under the File menu, select “Save to session as icon” or “Save as icon and close”.

2. Repeat step 1 for the other models to be included in the table (up to a total of six models).

3. When you are done estimating the models, open the icon view of your gretl session, by se-
lecting “Icon view” under the View menu in the main gretl window, or by clicking the “session
icon view” icon on the gretl toolbar.

4. In the Icon view, there is an icon labeled “Model table”. Decide which model you wish to
appear in the left-most column of the model table and add it to the table, either by dragging
its icon onto the Model table icon, or by right-clicking on the model icon and selecting “Add
to model table” from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second model selected
will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on its icon.
Under the Edit menu in the window which appears, you have the option of copying the table
to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on the model
table icon and select “Clear table”. Then go back to step 4 above and try again.

A simple instance of gretl’s model table is shown in Figure 3.3.

gretl: model table

E 8B m x

OLS estimates Z
Dependent variable: price
Model 1 Model 2 Model 3
const 129.1 121.2 52.35
(88.30) (80.18) (37.29)
sqft 0,1548%* 0,1453%* 0.,1388%*
(8.03194) (8.02121) (8.01873)
bedrms -21.58 -23.81
(27.83) (24.64)
baths -12.19
(43.25)
h 14 14 14
Adj . R**2 0.7868 0.8046 0.8056
Standard errors in parentheses
* indicates significance at the 10 percent level
*¥ jndicates sighificance at the 5 percent level ]
-

Close |

Figure 3.3: Example of model table
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The graph page

The “graph page” icon in the session window offers a means of putting together several graphs
for printing on a single page. This facility will work only if you have the KIEX typesetting system
installed, and are able to generate and view either PDF or PostScript output. The output format
is controlled by your choice of program for compiling TgX files, which can be found under the
“Programs” tab in the Preferences dialog box (under the “Tools” menu in the main window). Usually
this should be pdflatex for PDF output or latex for PostScript. In the latter case you must have a
working set-up for handling PostScript, which will usually include dvips, ghostscript and a viewer
such as gv, ggv or kghostview.

In the Icon view window, you can drag up to eight graphs onto the graph page icon. When you
double-click on the icon (or right-click and select “Display”), a page containing the selected graphs
(in PDF or EPS format) will be composed and opened in your viewer. From there you should be able
to print the page.

To clear the graph page, right-click on its icon and select “Clear”.

As with the model table, it is also possible to manipulate the graph page via commands in script or
console mode —see the entry for the graphpg command in the Gretl Command Reference.

Saving and re-opening sessions

If you create models or graphs that you think you may wish to re-examine later, then before quitting
gretl select “Session files, Save session” from the File menu and give a name under which to save
the session. To re-open the session later, either

o Start gretl then re-open the session file by going to the “File, Session files, Open session”, or

e From the command line, type gret1 -r sessionfile, where sessionfile is the name under which
the session was saved, or

e Drag the icon representing a session file onto gretl.



Chapter 4

Data files

4.1 Data file formats

Gretl has its own native format for data files. Most users will probably not want to read or write
such files outside of gretl itself, but occasionally this may be useful and details on the file formats
are given in Appendix A. The program can also import data from a variety of other formats. In
the GUI program this can be done via the “File, Open Data, User file” menu—note the drop-down
list of acceptable file types. In script mode, simply use the open command. The supported import
formats are as follows.

¢ Plain text files (comma-separated or “CSV” being the most common type). For details on what
gretl expects of such files, see Section 4.3.

e Spreadsheets: MS Excel, Ghumeric and Open Document (ODS). The requirements for such files
are given in Section 4.3.

o Stata data files (.dta).
e SPSS data files (. sav).
e SAS “xport” files (. xpt).

o Eviews workfiles (.wf1).1

JMulTi data files.

When you import data from a plain text format, gretl opens a “diagnostic” window, reporting on its
progress in reading the data. If you encounter a problem with ill-formatted data, the messages in
this window should give you a handle on fixing the problem.

Note that gretl has a facility for writing out data in the native formats of GNU R, Octave, JMulTi and
PcGive (see Appendix D). In the GUI client this option is found under the “File, Export data” menu;
in the command-line client use the store command with the appropriate option flag.

4.2 Databases

For working with large amounts of data gretl is supplied with a database-handling routine. A
database, as opposed to a data file, is not read directly into the program’s workspace. A database
can contain series of mixed frequencies and sample ranges. You open the database and select
series to import into the working dataset. You can then save those series in a native format data
file if you wish. Databases can be accessed via the menu item “File, Databases”.

For details on the format of gretl databases, see Appendix A.

ISee http://ricardo.ecn.wfu.edu/~cottrell/eviews_format/.
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Online access to databases

Several gretl databases are available from Wake Forest University. Your computer must be con-
nected to the internet for this option to work. Please see the description of the “data” command
under the Help menu.

== Visit the gretl data page for details and updates on available data.

Foreign database formats

Thanks to Thomas Doan of Estima, who made available the specification of the database format
used by RATS 4 (Regression Analysis of Time Series), gretl can handle such databases—or at least,
a subset of same, namely time-series databases containing monthly and quarterly series.

Gretl can also import data from PcGive databases. These take the form of a pair of files, one
containing the actual data (with suffix .bn7) and one containing supplementary information (.in7).

In addition, gretl offers ODBC connectivity. Be warned: this feature is meant for somewhat ad-
vanced users; there is currently no graphical interface. Interested readers will find more info in
appendix 42.

4.3 Creating a dataset from scratch

There are several ways of doing this:

1. Find, or create using a text editor, a plain text data file and open it via “Import”.

2. Use your favorite spreadsheet to establish the data file, save it in comma-separated format if
necessary (this may not be necessary if the spreadsheet format is MS Excel, Gnumeric or Open
Document), then use one of the “Import” options.

3. Use gretl’s built-in spreadsheet.
4. Select data series from a suitable database.

5. Use your favorite text editor or other software tools to a create data file in gretl format inde-
pendently.

Here are a few comments and details on these methods.

Common points on imported data

Options (1) and (2) involve using gretl’s “import” mechanism. For the program to read such data
successfully, certain general conditions must be satisfied:

e The first row must contain valid variable names. A valid variable name is of 31 characters
maximum,; starts with a letter; and contains nothing but letters, numbers and the underscore
character, _. (Longer variable names will be truncated to 31 characters.) Qualifications to the
above: First, in the case of an plain text import, if the file contains no row with variable names
the program will automatically add names, v1, v2 and so on. Second, by “the first row” is
meant the first relevant row. In the case of plain text imports, blank rows and rows beginning
with a hash mark, #, are ignored. In the case of Excel, Ghumeric and ODS imports, you are
presented with a dialog box where you can select an offset into the spreadsheet, so that gretl
will ignore a specified number of rows and/or columns.

e Data values: these should constitute a rectangular block, with one variable per column (and
one observation per row). The number of variables (data columns) must match the number
of variable names given. See also section 4.6. Numeric data are expected, but in the case of
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importing from plain text, the program offers limited handling of character (string) data: if
a given column contains character data only, consecutive numeric codes are substituted for
the strings, and once the import is complete a table is printed showing the correspondence
between the strings and the codes.

e Dates (or observation labels): Optionally, the first column may contain strings such as dates,
or labels for cross-sectional observations. Such strings have a maximum of 15 characters (as
with variable names, longer strings will be truncated). A column of this sort should be headed
with the string obs or date, or the first row entry may be left blank.

For dates to be recognized as such, the date strings should adhere to one or other of a set of
specific formats, as follows. For annual data: 4-digit years. For quarterly data: a 4-digit year,
followed by a separator (either a period, a colon, or the letter Q), followed by a 1-digit quarter.
Examples: 1997.1, 2002: 3, 1947Q1. For monthly data: a 4-digit year, followed by a period or
a colon, followed by a two-digit month. Examples: 1997.01, 2002:10.

Plain text (“CSV”) files can use comma, space, tab or semicolon as the column separator. When you
open such a file via the GUI you are given the option of specifying the separator, though in most
cases it should be detected automatically.

If you use a spreadsheet to prepare your data you are able to carry out various transformations of
the “raw” data with ease (adding things up, taking percentages or whatever): note, however, that
you can also do this sort of thing easily—perhaps more easily—within gretl, by using the tools
under the “Add” menu.

Appending imported data

You may wish to establish a dataset piece by piece, by incremental importation of data from other
sources. This is supported via the “File, Append data” menu items: gretl will check the new data for
conformability with the existing dataset and, if everything seems OK, will merge the data. You can
add new variables in this way, provided the data frequency matches that of the existing dataset. Or
you can append new observations for data series that are already present; in this case the variable
names must match up correctly. Note that by default (that is, if you choose “Open data” rather
than “Append data”), opening a new data file closes the current one.

Using the built-in spreadsheet

Under the “File, New data set” menu you can choose the sort of dataset you want to establish (e.g.
quarterly time series, cross-sectional). You will then be prompted for starting and ending dates (or
observation numbers) and the name of the first variable to add to the dataset. After supplying this
information you will be faced with a simple spreadsheet into which you can type data values. In
the spreadsheet window, clicking the right mouse button will invoke a popup menu which enables
you to add a new variable (column), to add an observation (append a row at the foot of the sheet),
or to insert an observation at the selected point (move the data down and insert a blank row.)

Once you have entered data into the spreadsheet you import these into gretl’s workspace using the
spreadsheet’s “Apply changes” button.

Please note that gretl’s spreadsheet is quite basic and has no support for functions or formulas.
Data transformations are done via the “Add” or “Variable” menus in the main window.

Selecting from a database
Another alternative is to establish your dataset by selecting variables from a database.

Begin with the “File, Databases” menu item. This has four forks: “Gretl native”, “RATS 4”, “PcGive”
and “On database server”. You should be able to find the file fedst1.bin in the file selector that
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opens if you choose the “Gretl native” option since this file, which contains a large collection of US
macroeconomic time series, is supplied with the distribution.

You won’t find anything under “RATS 4” unless you have purchased RATS data.? If you do possess
RATS data you should go into the “Tools, Preferences, General” dialog, select the Databases tab,
and fill in the correct path to your RATS files.

If your computer is connected to the internet you should find several databases (at Wake Forest
University) under “On database server”. You can browse these remotely; you also have the option
of installing them onto your own computer. The initial remote databases window has an item
showing, for each file, whether it is already installed locally (and if so, if the local version is up to
date with the version at Wake Forest).

Assuming you have managed to open a database you can import selected series into gretl’s workspace
by using the “Series, Import” menu item in the database window, or via the popup menu that ap-
pears if you click the right mouse button, or by dragging the series into the program’s main window.

Creating a gretl data file independently

It is possible to create a data file in one or other of gretl’s own formats using a text editor or
software tools such as awk, sed or perl. This may be a good choice if you have large amounts
of data already in machine readable form. You will, of course, need to study these data formats
(XML-based or “traditional”) as described in Appendix A.

4.4 Structuring a dataset

Once your data are read by gretl, it may be necessary to supply some information on the nature of
the data. We distinguish between three kinds of datasets:

1. Cross section
2. Time series

3. Panel data

The primary tool for doing this is the “Data, Dataset structure” menu entry in the graphical inter-
face, or the setobs command for scripts and the command-line interface.

Cross sectional data

By a cross section we mean observations on a set of “units” (which may be firms, countries, indi-
viduals, or whatever) at a common point in time. This is the default interpretation for a data file:
if there is insufficient information to interpret data as time-series or panel data, they are automat-
ically interpreted as a cross section. In the unlikely event that cross-sectional data are wrongly
interpreted as time series, you can correct this by selecting the “Data, Dataset structure” menu
item. Click the “cross-sectional” radio button in the dialog box that appears, then click “Forward”.
Click “OK” to confirm your selection.

Time series data

When you import data from a spreadsheet or plain text file, gretl will make fairly strenuous efforts
to glean time-series information from the first column of the data, if it looks at all plausible that
such information may be present. If time-series structure is present but not recognized, again you
can use the “Data, Dataset structure” menu item. Select “Time series” and click “Forward”; select the
appropriate data frequency and click “Forward” again; then select or enter the starting observation

2 See www.estima.com
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and click “Forward” once more. Finally, click “OK” to confirm the time-series interpretation if it is
correct (or click “Back” to make adjustments if need be).

Besides the basic business of getting a data set interpreted as time series, further issues may arise
relating to the frequency of time-series data. In a gretl time-series data set, all the series must
have the same frequency. Suppose you wish to make a combined dataset using series that, in their
original state, are not all of the same frequency. For example, some series are monthly and some
are quarterly.

Your first step is to formulate a strategy: Do you want to end up with a quarterly or a monthly data
set? A basic point to note here is that “compacting” data from a higher frequency (e.g. monthly) to
a lower frequency (e.g. quarterly) is usually unproblematic. You lose information in doing so, but
in general it is perfectly legitimate to take (say) the average of three monthly observations to create
a quarterly observation. On the other hand, “expanding” data from a lower to a higher frequency is
not, in general, a valid operation.

In most cases, then, the best strategy is to start by creating a data set of the lower frequency, and
then to compact the higher frequency data to match. When you import higher-frequency data from
a database into the current data set, you are given a choice of compaction method (average, sum,
start of period, or end of period). In most instances “average” is likely to be appropriate.

You can also import lower-frequency data into a high-frequency data set, but this is generally not
recommended. What gretl does in this case is simply replicate the values of the lower-frequency
series as many times as required. For example, suppose we have a quarterly series with the value
35.5 in 1990:1, the first quarter of 1990. On expansion to monthly, the value 35.5 will be assigned
to the observations for January, February and March of 1990. The expanded variable is therefore
useless for fine-grained time-series analysis, outside of the special case where you know that the
variable in question does in fact remain constant over the sub-periods.

When the current data frequency is appropriate, gretl offers both “Compact data” and “Expand
data” options under the “Data” menu. These options operate on the whole data set, compacting or
exanding all series. They should be considered “expert” options and should be used with caution.

Panel data

Panel data are inherently three dimensional —the dimensions being variable, cross-sectional unit,
and time-period. For example, a particular number in a panel data set might be identified as the
observation on capital stock for General Motors in 1980. (A note on terminology: we use the
terms “cross-sectional unit”, “unit” and “group” interchangeably below to refer to the entities that
compose the cross-sectional dimension of the panel. These might, for instance, be firms, countries

Or persons.)

For representation in a textual computer file (and also for gretl’s internal calculations) the three
dimensions must somehow be flattened into two. This “flattening” involves taking layers of the
data that would naturally stack in a third dimension, and stacking them in the vertical dimension.

gretl always expects data to be arranged “by observation”, that is, such that each row represents an
observation (and each variable occupies one and only one column). In this context the flattening of
a panel data set can be done in either of two ways:

e Stacked time series: the successive vertical blocks each comprise a time series for a given
unit.
e Stacked cross sections: the successive vertical blocks each comprise a cross-section for a

given period.

You may input data in whichever arrangement is more convenient. Internally, however, gretl always
stores panel data in the form of stacked time series.



Chapter 4. Data files 23

4.5 Panel data specifics

When you import panel data into gretl from a spreadsheet or comma separated format, the panel
nature of the data will not be recognized automatically (most likely the data will be treated as
“undated”). A panel interpretation can be imposed on the data using the graphical interface or via
the setobs command.

In the graphical interface, use the menu item “Data, Dataset structure”. In the first dialog box
that appears, select “Panel”. In the next dialog you have a three-way choice. The first two options,
“Stacked time series” and “Stacked cross sections” are applicable if the data set is already organized
in one of these two ways. If you select either of these options, the next step is to specify the number
of cross-sectional units in the data set. The third option, “Use index variables”, is applicable if the
data set contains two variables that index the units and the time periods respectively; the next step
is then to select those variables. For example, a data file might contain a country code variable and
a variable representing the year of the observation. In that case gretl can reconstruct the panel
structure of the data regardless of how the observation rows are organized.

The setobs command has options that parallel those in the graphical interface. If suitable index
variables are available you can do, for example

setobs unitvar timevar --panel-vars

where unitvar is a variable that indexes the units and timevar is a variable indexing the periods.
Alternatively you can use the form setobs freq 1:1 structure, where freq is replaced by the “block
size” of the data (that is, the number of periods in the case of stacked time series, or the number
of units in the case of stacked cross-sections) and structure is either --stacked-time-series or
--stacked-cross-section. Two examples are given below: the first is suitable for a panel in
the form of stacked time series with observations from 20 periods; the second for stacked cross
sections with 5 units.

setobs 20 1:1 --stacked-time-series
setobs 5 1:1 --stacked-cross-section

Panel data arranged by variable

Publicly available panel data sometimes come arranged “by variable.” Suppose we have data on two
variables, x1 and x2, for each of 50 states in each of 5 years (giving a total of 250 observations
per variable). One textual representation of such a data set would start with a block for x1, with
50 rows corresponding to the states and 5 columns corresponding to the years. This would be
followed, vertically, by a block with the same structure for variable x2. A fragment of such a data
file is shown below, with quinquennial observations 1965-1985. Imagine the table continued for
48 more states, followed by another 50 rows for variable x2.

x1

1965 1970 1975 1980 1985
AR 100.0 110.5 118.7 131.2 160.4
AZ 100.0 104.3 113.8 120.9 140.6

If a datafile with this sort of structure is read into gretl,? the program will interpret the columns as
distinct variables, so the data will not be usable “as is.” But there is a mechanism for correcting the
situation, namely the stack function.

Consider the first data column in the fragment above: the first 50 rows of this column constitute a
cross-section for the variable x1 in the year 1965. If we could create a new series by stacking the

3Note that you will have to modify such a datafile slightly before it can be read at all. The line containing the variable
name (in this example x1) will have to be removed, and so will the initial row containing the years, otherwise they will be
taken as numerical data.
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first 50 entries in the second column underneath the first 50 entries in the first, we would be on the
way to making a data set “by observation” (in the first of the two forms mentioned above, stacked
cross-sections). That is, we'd have a column comprising a cross-section for x1 in 1965, followed by
a cross-section for the same variable in 1970.

The following gretl script illustrates how we can accomplish the stacking, for both x1 and x2. We
assume that the original data file is called panel. txt, and that in this file the columns are headed
with “variable names” v1, v2, ..., v5. (The columns are not really variables, but in the first instance
we “pretend” that they are.)

open panel.txt

series x1 = stack(vl..v5, 50)

series x2 = stack(vl..v5, 50, 50)
setobs 50 1:1 --stacked-cross-section
store panel.gdt x1 x2

The second and third lines illustrate the syntax of the stack function, which has this signature:

series stack(list L, scalar Tength, scalar offset)

e L: alist of series on which to operate.
¢ Tength: an integer giving the number of observations to take from each series.

e offset: an integer giving the offset from the top of the dataset at which to start taking values
(optional, defaults to 0).

The “..” syntax in the example above constructs a list of the 5 contiguous series to be stacked.
More generally, you can define a named list of series and pass that as the first argument to stack
(see chapter 15). In this example we’re supposing that the full data set contains 100 rows, and that
in the stacking of variable x1 we wish to read only the first 50 rows from each column, so we give
50 as the second argument.

On line 3 we do the stacking for variable x2. Again we want a Tength of 50 for the components of
the stacked series, but this time we want to start reading from the 50th row of the original data,
and so we add a third offset argument of 50. Line 4 then imposes a panel interpretation on the
data. Finally, we save the stacked data to file, with the panel interpretation.

The illustrative script above is appropriate when the number of variables to be processed is small.
When then are many variables in the dataset it will be more convenient to use a loop to accomplish
the stacking, as shown in the following script. The setup is presumed to be the same as in the
previous case (50 units, 5 periods), but with 20 variables rather than 2.

open panel.txt
Tist L = vl..v5 # predefine a Tist of series
scalar length = 50
Toop i=1..20
scalar offset = (i - 1) * Tlength
series x$i = stack(L, length, offset)
endloop
setobs 50 1.01 --stacked-cross-section
store panel.gdt x1..x20

Side-by-side time series

There’s a second sort of data that you may wish to convert to gretl’s panel format, namely side-
by-side time series for a number of cross-sectional units. For example, a data file might contain
separate GDP series of common length T for each of N countries. To turn these into a single stacked
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time series the stack function can again be used. An example follows, where we suppose the
original data source is a comma-separated file named GDP. csv, containing GDP data for countries
from Austria (GDP_AT) to Zimbabwe (GDP_ZW) in consecutive columns.

open GDP.csv

scalar T = $nobs # the number of periods
Tist L = GDP_AT..GDP_ZW

series GDP = stack(L, T)

setobs T 1:01 --stacked-time-series
store panel.gdt GDP

The resulting data file, panel.gdt, will contain a single series of length NT where N is the number
of countries and T is the length of the original dataset. One could insert revised variants of lines
3 and 4 of the script if the original file contained additional side-by-side per-country series for
investment, consumption or whatever.

Panel data marker strings

It can be helpful with panel data to have the observations identified by mnemonic markers. A
special function in the genr command is available for this purpose.

In the example under the heading “Panel data arranged by variable” above, suppose all the states
are identified by two-letter codes in the left-most column of the original datafile. When the stack
function is invoked as shown, these codes will be stacked along with the data values. If the first row
is marked AR for Arkansas, then the marker AR will end up being shown on each row containing an
observation for Arkansas. That’s all very well, but these markers don’t tell us anything about the
date of the observation. To rectify this we could do:

genr time
series year = 1960 + (5 * time)
genr markers = "%s:%d", marker, year

The first line generates a 1-based index representing the period of each observation, and the second
line uses the time variable to generate a variable representing the year of the observation. The
third line contains this special feature: if (and only if) the name of the new “variable” to generate is
markers, the portion of the command following the equals sign is taken as a C-style format string
(which must be wrapped in double quotes), followed by a comma-separated list of arguments.
The arguments will be printed according to the given format to create a new set of observation
markers. Valid arguments are either the names of variables in the dataset, or the string marker
which denotes the pre-existing observation marker. The format specifiers which are likely to be
useful in this context are %s for a string and %d for an integer. Strings can be truncated: for
example %.3s will use just the first three characters of the string. To chop initial characters off
an existing observation marker when constructing a new one, you can use the syntax marker + n,
where n is a positive integer: in the case the first n characters will be skipped.

After the commands above are processed, then, the observation markers will look like, for example,
AR:1965, where the two-letter state code and the year of the observation are spliced together with
a colon.

Panel dummy variables

In a panel study you may wish to construct dummy variables of one or both of the following sorts:
(a) dummies as unique identifiers for the units or groups, and (b) dummies as unique identifiers for
the time periods. The former may be used to allow the intercept of the regression to differ across
the units, the latter to allow the intercept to differ across periods.

Two special functions are available to create such dummies. These are found under the “Add”
menu in the GUI, or under the genr command in script mode or gretlcli.
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1. “unit dummies” (script command genr unitdum). This command creates a set of dummy
variables identifying the cross-sectional units. The variable du_1 will have value 1 in each
row corresponding to a unit 1 observation, 0 otherwise; du_2 will have value 1 in each row
corresponding to a unit 2 observation, 0 otherwise; and so on.

2. “time dummies” (script command genr timedum). This command creates a set of dummy
variables identifying the periods. The variable dt_1 will have value 1 in each row correspond-
ing to a period 1 observation, 0 otherwise; dt_2 will have value 1 in each row corresponding
to a period 2 observation, 0 otherwise; and so on.

If a panel data set has the YEAR of the observation entered as one of the variables you can create a
periodic dummy to pick out a particular year, e.g. genr dum = (YEAR==1960). You can also create
periodic dummy variables using the modulus operator, %. For instance, to create a dummy with
value 1 for the first observation and every thirtieth observation thereafter, 0 otherwise, do

genr index
series dum = ((index-1) % 30) ==

Lags, differences, trends

If the time periods are evenly spaced you may want to use lagged values of variables in a panel
regression (but see also chapter 24); you may also wish to construct first differences of variables of
interest.

Once a dataset is identified as a panel, gretl will handle the generation of such variables correctly.
For example the command genr x1_1 = x1(-1) will create a variable that contains the first lag
of x1 where available, and the missing value code where the lag is not available (e.g. at the start of
the time series for each group). When you run a regression using such variables, the program will
automatically skip the missing observations.

When a panel data set has a fairly substantial time dimension, you may wish to include a trend in
the analysis. The command genr time creates a variable named time which runs from 1 to T for
each unit, where T is the length of the time-series dimension of the panel. If you want to create an
index that runs consecutively from 1 to m X T, where m is the number of units in the panel, use
genr index.

Basic statistics by unit

gretl contains functions which can be used to generate basic descriptive statistics for a given vari-
able, on a per-unit basis; these are pnobs () (mumber of valid cases), pmin() and pmax () (minimum
and maximum) and pmean() and psd() (mean and standard deviation).

As a brief illustration, suppose we have a panel data set comprising 8 time-series observations on
each of N units or groups. Then the command

series pmx = pmean(x)

creates a series of this form: the first 8 values (corresponding to unit 1) contain the mean of x for
unit 1, the next 8 values contain the mean for unit 2, and so on. The psd() function works in a
similar manner. The sample standard deviation for group i is computed as

2= x0)?
Si =] 7o

where T; denotes the number of valid observations on x for the given unit, X; denotes the group
mean, and the summation is across valid observations for the group. If T; < 2, however, the
standard deviation is recorded as O.
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One particular use of psd() may be worth noting. If you want to form a sub-sample of a panel that
contains only those units for which the variable x is time-varying, you can either use

smpl pmin(x) < pmax(x) --restrict
or

smp1 psd(x) > 0 --restrict

4.6 Missing data values
Representation and handling

Missing values are represented internally as NaN (“not a number”), as defined in the IEEE 754
floating-point standard. In a native-format data file they should be represented as NA. When im-
porting CSV data gretl accepts several common representations of missing values including —999,
the string NA (in upper or lower case), a single dot, or simply a blank cell. Blank cells should, of
course, be properly delimited, e.g. 120.6,,5.38, in which the middle value is presumed missing.

As for handling of missing values in the course of statistical analysis, gretl does the following:

e In calculating descriptive statistics (mean, standard deviation, etc.) under the summary com-
mand, missing values are simply skipped and the sample size adjusted appropriately.

e In running regressions gretl first adjusts the beginning and end of the sample range, trun-
cating the sample if need be. Missing values at the beginning of the sample are common in
time series work due to the inclusion of lags, first differences and so on; missing values at the
end of the range are not uncommon due to differential updating of series and possibly the
inclusion of leads.

If gretl detects any missing values “inside” the (possibly truncated) sample range for a regression,
the result depends on the character of the dataset and the estimator chosen. In many cases, the
program will automatically skip the missing observations when calculating the regression results.
In this situation a message is printed stating how many observations were dropped. On the other
hand, the skipping of missing observations is not supported for all procedures: exceptions include
all autoregressive estimators, system estimators such as SUR, and nonlinear least squares. In the
case of panel data, the skipping of missing observations is supported only if their omission leaves
a balanced panel. If missing observations are found in cases where they are not supported, gretl
gives an error message and refuses to produce estimates.

Manipulating missing values

Some special functions are available for the handling of missing values. The Boolean function
missing() takes the name of a variable as its single argument; it returns a series with value 1 for
each observation at which the given variable has a missing value, and value 0 otherwise (that is, if
the given variable has a valid value at that observation). The function ok () is complementary to
missing; it is just a shorthand for !missing (where ! is the Boolean NOT operator). For example,
one can count the missing values for variable x using

scalar nmiss_x = sum(missing(x))

The function zeromiss (), which again takes a single series as its argument, returns a series where
all zero values are set to the missing code. This should be used with caution—one does not want
to confuse missing values and zeros—but it can be useful in some contexts. For example, one can
determine the first valid observation for a variable x using
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genr time
scalar x0 = min(zeromiss(time * ok(x)))

The function misszero() does the opposite of zeromiss, that is, it converts all missing values to
Zero.

If missing values get involved in calculations, they propagate according to the IEEE rules: notably,
if one of the operands to an arithmetical operation is a NaN, the result will also be NaN.

4.7 Maximum size of data sets

Basically, the size of data sets (both the number of variables and the number of observations per
variable) is limited only by the characteristics of your computer. Gretl allocates memory dynami-
cally, and will ask the operating system for as much memory as your data require. Obviously, then,
you are ultimately limited by the size of RAM.

Aside from the multiple-precision OLS option, gretl uses double-precision floating-point numbers
throughout. The size of such numbers in bytes depends on the computer platform, but is typically
eight. To give a rough notion of magnitudes, suppose we have a data set with 10,000 observations
on 500 variables. That’s 5 million floating-point numbers or 40 million bytes. If we define the
megabyte (MB) as 1024 x 1024 bytes, as is standard in talking about RAM, it’s slightly over 38 MB.
The program needs additional memory for workspace, but even so, handling a data set of this size
should be quite feasible on a current PC, which at the time of writing is likely to have at least 256
MB of RAM.

If RAM is not an issue, there is one further limitation on data size (though it’s very unlikely to
be a binding constraint). That is, variables and observations are indexed by signed integers, and
on a typical PC these will be 32-bit values, capable of representing a maximum positive value of
231 — 1 =2,147,483,647.

The limits mentioned above apply to gretl’'s “native” functionality. There are tighter limits with
regard to two third-party programs that are available as add-ons to gretl for certain sorts of time-
series analysis including seasonal adjustment, namely TRAMO/SEATS and X-12-ARIMA. These pro-
grams employ a fixed-size memory allocation, and can’t handle series of more than 600 observa-
tions.

4.8 Data file collections

If you're using gretl in a teaching context you may be interested in adding a collection of data files
and/or scripts that relate specifically to your course, in such a way that students can browse and
access them easily.

There are three ways to access such collections of files:
o For data files: select the menu item “File, Open data, Sample file”, or click on the folder icon
on the gretl toolbar.

e For script files: select the menu item “File, Script files, Example scripts”.
When a user selects one of the items:
e The data or script files included in the gretl distribution are automatically shown (this includes

files relating to Ramanathan’s Introductory Econometrics and Greene’s Econometric Analysis).

e The program looks for certain known collections of data files available as optional extras,
for instance the datafiles from various econometrics textbooks (Davidson and MacKinnon,
Gujarati, Stock and Watson, Verbeek, Wooldridge) and the Penn World Table (PWT 5.6). (See
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the data page at the gretl website for information on these collections.) If the additional files
are found, they are added to the selection windows.

e The program then searches for valid file collections (not necessarily known in advance) in
these places: the “system” data directory, the system script directory, the user directory,
and all first-level subdirectories of these. For reference, typical values for these directories
are shown in Table 4.1. (Note that PERSONAL is a placeholder that is expanded by Windows,
corresponding to “My Documents” on English-language systems.)

Linux MS Windows
system data dir /usr/share/gretl/data c:\Program Files\gretl\data
system script dir /usr/share/gretl/scripts c:\Program Files\gretl\scripts
user dir $HOME /gret] PERSONAL\gret1

Table 4.1: Typical locations for file collections

Any valid collections will be added to the selection windows. So what constitutes a valid file collec-
tion? This comprises either a set of data files in gretl XML format (with the .gdt suffix) or a set of
script files containing gretl commands (with .1np suffix), in each case accompanied by a “master
file” or catalog. The gretl distribution contains several example catalog files, for instance the file
descriptions in the misc sub-directory of the gretl data directory and ps_descriptions in the
misc sub-directory of the scripts directory.

If you are adding your own collection, data catalogs should be named descriptions and script
catalogs should be be named ps_descriptions. In each case the catalog should be placed (along
with the associated data or script files) in its own specific sub-directory (e.g. /usr/share/gretl/
data/mydata or c:\userdata\gretl\data\mydata).

The catalog files are plain text; if they contain non-ASCII characters they must be encoded as UTEF-
8. The syntax of such files is straightforward. Here, for example, are the first few lines of gretl’s
“misc” data catalog:

# Gretl: various illustrative datafiles
"arma","artificial data for ARMA script example"
"ects_nls","Nonlinear least squares example"

"hamilton","Prices and exchange rate, U.S. and Italy"

The first line, which must start with a hash mark, contains a short name, here “Gretl”, which
will appear as the label for this collection’s tab in the data browser window, followed by a colon,
followed by an optional short description of the collection.

Subsequent lines contain two elements, separated by a comma and wrapped in double quotation
marks. The first is a datafile name (leave off the .gdt suffix here) and the second is a short de-
scription of the content of that datafile. There should be one such line for each datafile in the
collection.

A script catalog file looks very similar, except that there are three fields in the file lines: a filename
(without its .1inp suffix), a brief description of the econometric point illustrated in the script, and
a brief indication of the nature of the data used. Again, here are the first few lines of the supplied
“misc” script catalog:

# Gretl: various sample scripts

non

"arma","ARMA modeling","artificial data"
"ects_nls","Nonlinear least squares (Davidson)","artificial data"

"leverage","Influential observations","artificial data"

non non

"longley","Multicollinearity"”,"US employment"


http://gretl.sourceforge.net/gretl_data.html
/usr/share/gretl/data/mydata
/usr/share/gretl/data/mydata

Chapter 4. Data files 30
If you want to make your own data collection available to users, these are the steps:

1. Assemble the data, in whatever format is convenient.

2. Convert the data to gretl format and save as gdt files. It is probably easiest to convert the data
by importing them into the program from plain text, CSV, or a spreadsheet format (MS Excel
or Gnumeric) then saving them. You may wish to add descriptions of the individual variables
(the “Variable, Edit attributes” menu item), and add information on the source of the data (the
“Data, Edit info” menu item).

3. Write a descriptions file for the collection using a text editor.

4. Put the datafiles plus the descriptions file in a subdirectory of the gretl data directory (or user
directory).

5. If the collection is to be distributed to other people, package the data files and catalog in some
suitable manner, e.g. as a zipfile.

If you assemble such a collection, and the data are not proprietary, we would encourage you to
submit the collection for packaging as a gretl optional extra.

4.9 Assembling data from multiple sources

In many contexts researchers need to bring together data from multiple source files, and in some
cases these sources are not organized such that the data can simply be “stuck together” by append-
ing rows or columns to a base dataset. In gretl, the join command can be used for this purpose;
this command is discussed in detail in chapter 7.
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Sub-sampling a dataset

5.1 Introduction

Some subtle issues can arise here; this chapter attempts to explain the issues.

A sub-sample may be defined in relation to a full dataset in two different ways: we will refer to these
as “setting” the sample and “restricting” the sample; these methods are discussed in sections 5.2
and 5.3 respectively. In addition section 5.4 discusses some special issues relating to panel data,
and section 5.5 covers resampling with replacement, which is useful in the context of bootstrapping
test statistics.

The following discussion focuses on the command-line approach. But you can also invoke the
methods outlined here via the items under the Sample menu in the GUI program.

5.2 Setting the sample

By “setting” the sample we mean defining a sub-sample simply by means of adjusting the starting
and/or ending point of the current sample range. This is likely to be most relevant for time-series
data. For example, one has quarterly data from 1960:1 to 2003:4, and one wants to run a regression
using only data from the 1970s. A suitable command is then

smp1 1970:1 1979:4

Or one wishes to set aside a block of observations at the end of the data period for out-of-sample
forecasting. In that case one might do

smp1 ; 2000:4
where the semicolon is shorthand for “leave the starting observation unchanged”. (The semicolon
may also be used in place of the second parameter, to mean that the ending observation should be
unchanged.) By “unchanged” here, we mean unchanged relative to the last smp1 setting, or relative

to the full dataset if no sub-sample has been defined up to this point. For example, after

smpl 1970:1 2003:4
smp1 ; 2000:4

the sample range will be 1970:1 to 2000:4.

An incremental or relative form of setting the sample range is also supported. In this case a relative
offset should be given, in the form of a signed integer (or a semicolon to indicate no change), for
both the starting and ending point. For example

smpl +1 ;
will advance the starting observation by one while preserving the ending observation, and
smpl +2 -1

31
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will both advance the starting observation by two and retard the ending observation by one.

An important feature of “setting” the sample as described above is that it necessarily results in
the selection of a subset of observations that are contiguous in the full dataset. The structure of
the dataset is therefore unaffected (for example, if it is a quarterly time series before setting the
sample, it remains a quarterly time series afterwards).

5.3 Restricting the sample

By “restricting” the sample we mean selecting observations on the basis of some Boolean (logical)
criterion, or by means of a random number generator. This is likely to be most relevant for cross-
sectional or panel data.

Suppose we have data on a cross-section of individuals, recording their gender, income and other
characteristics. We wish to select for analysis only the women. If we have a male dummy variable
with value 1 for men and O for women we could do

smpl male==0 --restrict

to this effect. Or suppose we want to restrict the sample to respondents with incomes over $50,000.
Then we could use

smp1 income>50000 --restrict

A question arises: if we issue the two commands above in sequence, what do we end up with in
our sub-sample: all cases with income over 50000, or just women with income over 500007 By
default, the answer is the latter: women with income over 50000. The second restriction augments
the first, or in other words the final restriction is the logical product of the new restriction and any
restriction that is already in place. If you want a new restriction to replace any existing restrictions
you can first recreate the full dataset using

smpl --full
Alternatively, you can add the replace option to the smp1 command:
smp1l income>50000 --restrict --replace

This option has the effect of automatically re-establishing the full dataset before applying the new
restriction.

Unlike a simple “setting” of the sample, “restricting” the sample may result in selection of non-
contiguous observations from the full data set. It may therefore change the structure of the data
set.

This can be seen in the case of panel data. Say we have a panel of five firms (indexed by the variable
f1irm) observed in each of several years (identified by the variable year). Then the restriction

smpl year==1995 --restrict
produces a dataset that is not a panel, but a cross-section for the year 1995. Similarly
smpl firm==3 --restrict

produces a time-series dataset for firm number 3.

For these reasons (possible non-contiguity in the observations, possible change in the structure of
the data), gretl acts differently when you “restrict” the sample as opposed to simply “setting” it. In
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the case of setting, the program merely records the starting and ending observations and uses these
as parameters to the various commands calling for the estimation of models, the computation of
statistics, and so on. In the case of restriction, the program makes a reduced copy of the dataset
and by default treats this reduced copy as a simple, undated cross-section—but see the further
discussion of panel data in section 5.4.

If you wish to re-impose a time-series interpretation of the reduced dataset you can do so using the
setobs command, or the GUI menu item “Data, Dataset structure”.

The fact that “restricting” the sample results in the creation of a reduced copy of the original
dataset may raise an issue when the dataset is very large. With such a dataset in memory, the
creation of a copy may lead to a situation where the computer runs low on memory for calculating
regression results. You can work around this as follows:

1. Open the full data set, and impose the sample restriction.
2. Save a copy of the reduced data set to disk.
3. Close the full dataset and open the reduced one.

4. Proceed with your analysis.

Random sub-sampling

Besides restricting the sample on some deterministic criterion, it may sometimes be useful (when
working with very large datasets, or perhaps to study the properties of an estimator) to draw a
random sub-sample from the full dataset. This can be done using, for example,

smp1l 100 --random

to select 100 cases. If you want the sample to be reproducible, you should set the seed for the
random number generator first, using the set command. This sort of sampling falls under the
“restriction” category: a reduced copy of the dataset is made.

5.4 Panel data

Consider for concreteness the Arellano-Bond dataset supplied with gretl (abdata.gdt). This com-
prises data on 140 firms (n = 140) observed over the years 1976-1984 (T = 9). The dataset is
“nominally balanced” in the sense that that the time-series length is the same for all countries (this
being a requirement for a dataset to count as a panel in gretl), but in fact there are many missing
values (NAs).

You may want to sub-sample such a dataset in either the cross-sectional dimension (limit the sam-
ple to a subset of firms) or the time dimension (e.g. use data from the 1980s only). One way to
sub-sample on firms keys off the notation used by gretl for panel observations. The full data range
is printed as 1:1 (firm 1, period 1) to 140:9 (firm 140, period 9). The effect of

smpl 1:1 80:9

is to limit the sample to the first 80 firms. Note that if you instead tried smp1 1:1 80:4 this would
provoke an error: you cannot use this syntax to sub-sample in the time dimension of the panel.
Alternatively, and perhaps more naturally, you can use the --unit option with the smpT command
to limit the sample in the cross-sectional dimension, as in

smpl 1 80 --unit

The firms in the Arellano-Bond dataset are anonymous, but suppose you had a panel with five
named countries. With such a panel you can inform gretl of the names of the groups using the
setobs command. For example, given
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string cstr = "Portugal Italy Ireland Greece Spain"
setobs country cstr --panel-groups

gretl creates a string-valued series named country with group names taken from the variable cstr.
Then, to include only Italy and Spain you could do

smp1 country=="Italy" || country=="Spain" --restrict
or to exclude one country,
smpl country!="Ireland" --restrict

To sub-sample in the time dimension, use of --restrict is required. For example, the Arellano-
Bond dataset contains a variable named YEAR that records the year of the observations and if one
wanted to omit the first two years of data one could do

smpl YEAR >= 1978 --restrict

If a dataset does not already incude a suitable variable for this purpose one can use the command
genr time to create a simple 1-based time index.

Note that if you apply a sample restriction that just selects certain units (firms, countries or what-
ever), or selects certain contiguous time-periods —such that n > 1, T > 1 and the time-series length
is still the same across all included units —your sub-sample will still be interpreted by gretl as a
panel.

Unbalancing restrictions

In some cases one wants to sub-sample according to a criterion that “cuts across the grain” of
a panel dataset. For instance, suppose you have a micro dataset with thousands of individuals
observed over several years and you want to restrict the sample to observations on employed
women.

If we simply extracted from the total nT rows of the dataset those that pertain to women who were
employed at time t (t = 1,...,T) we would likely end up with a dataset that doesn’t count as a
panel in gretl (because the specific time-series length, T;, would differ across individuals). In some
contexts it might be OK that gretl doesn’t take your sub-sample to be a panel, but if you want to
apply panel-specific methods this is a problem. You can solve it by giving the --balanced option
with smp1. For example, supposing your dataset contained dummy variables gender (with the value
1 coding for women) and employed, you could do

smpl gender==1 & & employed==1 --restrict --balanced

What exactly does this do? Well, let’s say the years of your data are 2000, 2005 and 2010, and that
some women were employed in all of those years, giving a maximum T; value of 3. But individual
526 is a women who was employed only in the year 2000 (T; = 1). The effect of the --balanced
option is then to insert “padding rows” of NAs for the years 2005 and 2010 for individual 526, and
similarly for all individuals with 0 < T; < 3. Your sub-sample then qualifies as a panel.

5.5 Resampling and bootstrapping

Given an original data series x, the command

series xr = resample(x)
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creates a new series each of whose elements is drawn at random from the elements of x. If the
original series has 100 observations, each element of x is selected with probability 1/100 at each
drawing. Thus the effect is to “shuffle” the elements of x, with the twist that each element of x may
appear more than once, or not at all, in xr.

The primary use of this function is in the construction of bootstrap confidence intervals or p-values.
Here is a simple example. Suppose we estimate a simple regression of  on x via OLS and find that
the slope coefficient has a reported t-ratio of ty with v degrees of freedom. A two-tailed p-value
for the null hypothesis that the slope parameter equals zero can then be found using the t(v)
distribution. Depending on the context, however, we may doubt whether the ratio of coefficient to
standard error truly follows the t(v) distribution. In that case we could derive a bootstrap p-value
as shown in Listing 5.1.

Under the null hypothesis that the slope with respect to x is zero, y is simply equal to its mean plus
an error term. We simulate y by resampling the residuals from the initial OLS and re-estimate the
model. We repeat this procedure a large number of times, and record the number of cases where
the absolute value of the t-ratio is greater than tj: the proportion of such cases is our bootstrap
p-value. For a good discussion of simulation-based tests and bootstrapping, see Davidson and
MacKinnon (2004, chapter 4); Davidson and Flachaire (2001) is also instructive.

Listing 5.1: Calculation of bootstrap p-value [Download v]|

nulldata 50

set seed 54321

series x = normal()

series y = 10 + x + 2*normal()

ols y 0 x

# the reported t-stat

t0 = abs($coeff[2] / $stderr[2])

# save the residuals

series u = $uhat

scalar ybar = mean(y)

# number of replications for bootstrap

scalar B = 1000

scalar tcount = 0

series ysim

Toop B
# generate simulated y by resampling
ysim = ybar + resample(u)
ols ysim 0 x --quiet
scalar tsim = abs($coeff[2] / $stderr[2])
tcount += (tsim > t0)

endloop

printf "proportion of cases with |[t| > %.3f = %g\n", t0, tcount / B


http://gretl.sourceforge.net/guidefiles/example-05.1.inp

Chapter 6

Graphs and plots

6.1 Gnuplot graphs

A separate program, gnuplot, is called to generate graphs. Gnuplot is a very full-featured graphing
program with myriad options. It is available from www.gnuplot.info (but note that a suitable copy
of gnuplot is bundled with the packaged versions of gretl for MS Windows and Mac OS X). Gretl
gives you direct access, via a graphical interface, to a subset of gnuplot’s options and it tries to
choose sensible values for you; it also allows you to take complete control over graph details if you
wish.

With a graph displayed, you can click on the graph window for a pop-up menu with the following
options.

e Save as PNG: Save the graph in Portable Network Graphics format (the same format that you
see on screen).

e Save as postscript: Save in encapsulated postscript (EPS) format.
¢ Save as Windows metafile: Save in Enhanced Metafile (EMF) format.

e Save to session as icon: The graph will appear in iconic form when you select “Icon view” from
the View menu.

e Zoom: Lets you select an area within the graph for closer inspection (not available for all
graphs).

e Print: (Current GTK or MS Windows only) lets you print the graph directly.

e Copy to clipboard: MS Windows only, lets you paste the graph into Windows applications such
as MS Word.

¢ Edit: Opens a controller for the plot which lets you adjust many aspects of its appearance.

e Close: Closes the graph window.

Displaying data labels

For simple X-Y scatter plots, some further options are available if the dataset includes “case mark-
ers” (that is, labels identifying each observation).! With a scatter plot displayed, when you move
the mouse pointer over a data point its label is shown on the graph. By default these labels are
transient: they do not appear in the printed or copied version of the graph. They can be removed by
selecting “Clear data labels” from the graph pop-up menu. If you want the labels to be affixed per-
manently (so they will show up when the graph is printed or copied), select the option “Freeze data
labels” from the pop-up menu; “Clear data labels” cancels this operation. The other label-related
option, “All data labels”, requests that case markers be shown for all observations. At present the
display of case markers is disabled for graphs containing more than 250 data points.

IFor an example of such a dataset, see the Ramanathan file data4-10: this contains data on private school enrollment
for the 50 states of the USA plus Washington, DC; the case markers are the two-letter codes for the states.
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GUI plot editor

Selecting the Edit option in the graph popup menu opens an editing dialog box, shown in Figure 6.1.
Notice that there are several tabs, allowing you to adjust many aspects of a graph’s appearance:
font, title, axis scaling, line colors and types, and so on. You can also add lines or descriptive labels
to a graph (under the Lines and Labels tabs). The “Apply” button applies your changes without
closing the editor; “OK” applies the changes and closes the dialog.

1E| X-axis |Y—axi5 | Lines | Labels | Palette |

Title of plot |price versus sqft (with least squares |
key position left top - |
fitted line linear: y = a + b*x - |

Show full berder

font: Sans 8 |

[] set as default

I{ Help </ Apply <Jok | 3¢ Close

Figure 6.1: gretl’s gnuplot controller

Publication-quality graphics: advanced options

The GUI plot editor has two limitations. First, it cannot represent all the myriad options that
gnuplot offers. Users who are sufficiently familiar with gnuplot to know what they’re missing in
the plot editor presumably don’t need much help from gretl, so long as they can get hold of the
gnuplot command file that gretl has put together. Second, even if the plot editor meets your needs,
in terms of fine-tuning the graph you see on screen, a few details may need further work in order
to get optimal results for publication.

Either way, the first step in advanced tweaking of a graph is to get access to the graph command
file.

In the graph display window, right-click and choose “Save to session as icon”.

If it’s not already open, open the icon view window — either via the menu item View/Icon view,
or by clicking the “session icon view” button on the main-window toolbar.

Right-click on the icon representing the newly added graph and select “Edit plot commands”
from the pop-up menu.

You get a window displaying the plot file (Figure 6.2).

Here are the basic things you can do in this window. Obviously, you can edit the file you just
opened. You can also send it for processing by gnuplot, by clicking the “Execute” (cogwheel) icon
in the toolbar. Or you can use the “Save as” button to save a copy for editing and processing as you
wish.
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QL4 BEARS O X

# set term pngcairo font "Vera,Q" =
set encoding utfs
set style line 1 lec rgb "#ffoooo"
set style line 2 lc rgb "#o0OOff"
set style line 3 lc rgb "#S0caso"
set style line 4 lc rgb "#bf2shz"
set style line 5 lc rgb "#8faab3"
set style line 6 lc rgb "#ffasoo"
set style increment user
# X ="'Z3" (4)
#Y ="'y (1)
set xlabel 'z
set xzeroaxis
set datafile missing "7"
# plot includes automatic fit: OLS
set title "Y versus Z3 (with least squares fit)"
set ylabel 'v!
set key left top
set xrange [0:15.371875]
plot
oloneina 12022 tatla 1w mainte A hdl

4 3

Figure 6.2: Plot commands editor

Unless you're a gnuplot expert, most likely you’ll only need to edit a couple of lines at the top of
the file, specifying a driver (plus options) and an output file. We offer here a brief summary of some
points that may be useful.

First, gnuplot’s output mode is set via the command set term followed by the name of a supported
driver (“terminal” in gnuplot parlance) plus various possible options. (The top line in the plot
commands window shows the set term line that gretl used to make a PNG file, commented out.)
The graphic formats that are most suitable for publication are PDF and EPS. These are supported
by the gnuplot term types pdf, pdfcairo and postscript (with the eps option). The pdfcairo
driver has the virtue that is behaves in a very similar manner to the PNG one, the output of which
you see on screen. This is provided by the version of gnuplot that is included in the gretl packages
for MS Windows and Mac OS X; if you're on Linux it may or may be supported. If pdfcairo is not
available, the pdf terminal may be available; the postscript terminal is almost certainly available.

Besides selecting a term type, if you want to get gnuplot to write the actual output file you need
to append a set output line giving a filename. Here are a few examples of the first two lines you
might type in the window editing your plot commands. We’ll make these more “realistic” shortly.

set term pdfcairo
set output ’'mygraph.pdf’

set term pdf
set output ’'mygraph.pdf’

set term postscript eps
set output ’mygraph.eps’

There are a couple of things worth remarking here. First, you may want to adjust the size of the
graph, and second you may want to change the font. The default sizes produced by the above
drivers are 5 inches by 3 inches for pdfcairo and pdf, and 5 inches by 3.5 inches for postscript
eps. In each case you can change this by giving a size specification, which takes the form XX, YY
(examples below).
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You may ask, why bother changing the size in the gnuplot command file? After all, PDF and EPS are
both vector formats, so the graphs can be scaled at will. True, but a uniform scaling will also affect
the font size, which may end looking wrong. You can get optimal results by experimenting with
the font and size options to gnuplot’s set term command. Here are some examples (comments
follow below).

# pdfcairo, regular size, slightly amended
set term pdfcairo font "Sans,6" size 5in,3.51in
# or small size

set term pdfcairo font "Sans,5" size 3in,2in

# pdf, regular size, slightly amended

set term pdf font "Helvetica,8" size 5in,3.5in
# or small

set term pdf font "Helvetica,6" size 3in,2in

# postscript, regular

set term post eps solid font "Helvetica,1l6"

# or small

set term post eps solid font "Helvetica,1l2" size 3in,2in

On the first line we set a sans serif font for pdfcairo at a suitable size for a 5 x 3.5 inch plot
(which you may find looks better than the rather “letterboxy” default of 5 x 3). And on the second
we illustrate what you might do to get a smaller 3 X 2 inch plot. You can specify the plot size in
centimeters if you prefer, as in

set term pdfcairo font "Sans,6" size 6cm,4cm

We then repeat the exercise for the pdf terminal. Notice that here we're specifying one of the 35
standard PostScript fonts, namely Helvetica. Unlike pdfcairo, the plain pdf driver is unlikely to
be able to find fonts other than these.

In the third pair of lines we illustrate options for the postscript driver (which, as you see, can
be abbreviated as post). Note that here we have added the option solid. Unlike most other
drivers, this one uses dashed lines unless you specify the solid option. Also note that we've
(apparently) specified a much larger font in this case. That's because the eps option in effect tells
the postscript driver to work at half-size (among other things), so we need to double the font
size.

Table 6.1 summarizes the basics for the three drivers we have mentioned.

Terminal  default size (inches) suggested font

pdfcairo 5x%x3 Sans,6
pdf 5x%x3 Helvetica,8
post eps 5% 3.5 Helvetica,16

Table 6.1: Drivers for publication-quality graphics

To find out more about gnuplot visit www.gnuplot.info. This site has documentation for the current
version of the program in various formats.

Additional tips

To be written. Line widths, enhanced text. Show a “before and after” example.
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6.2 Plotting graphs from scripts

When working with scripts, you may want to have a graph shown onto your display or saved into a
file. In fact, if in your usual workflow you find yourself creating similar graphs over and over again,
you might want to consider the option of writing a script which automates this process for you.
gretl gives you two main tools for doing this: one is a command called ghuplot, whose main use
is to create standard plot quickly. The other one is the plot command block, which has a more
elaborate syntax but offers you more control on output.

The gnuplot command

The gnuplot command is described at length in the Gretl Command Reference and the online help
system. Here, we just summarize its main features: basically, it consists of the gnuplot keyword,
followed by a list of items, telling the command what you want plotted and a list of options, telling
it how you want it plotted.

For example, the line
gnuplot yl y2 x

will give you a basic XY plot of the two series y1 and y2 on the vertical axis versus the series x on
the horizontal axis. In general, the arguments to the gnuplot command is a list of series, the last
of which goes on the x-axis, while all the other ones go onto the y-axis. By default, the gnupTlot
command gives you a scatterplot. If you just have one variable on the y-axis, then gretl will also
draw a the OLS interpolation, if the fit is good enough.?

Several aspects of the behavior described above can be modified. You do this by appending options
to the command. Most options can be broadly grouped in three categories:

1. Plot styles: we support points (the default choice), lines, lines and points together, and im-
pulses (vertical lines).

2. Algorithm for the fitted line: here you can choose between linear, quadratic and cubic inter-
polation, but also more exotic choices, such as semi-log, inverse or loess (non-parametric). Of
course, you can also turn this feature off.

3. Input and output: you can choose whether you want your graph on your computer screen
(and possibly use the in-built graphical widget to further customize it — see above, page 37),
or rather save it to a file. We support several graphical formats, among which PNG and PDF,
to make it easy to incorporate your plots into text documents.

The following script uses the AWM dataset to exemplify some traditional plots in macroeconomics:

open AWM.gdt --quiet

# --- consumption and income, different styles -----——————-
gnupTot PCR YER

gnupTot PCR YER --output=display

gnuplot PCR YER --output=display --time-series

gnuplot PCR YER --output=display --time-series --with-Tines

# --- Phillips’ curve, different fitted lines -----—-—————-—-—-

gnupTot INFQ URX --output=display

2The technical condition for this is that the two-tailed p-value for the slope coefficient should be under 10%.
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gnuplot INFQ URX --fit=none --output=display
gnuplot INFQ URX --fit=inverse --output=display
gnuplot INFQ URX --fit=Toess --output=display

These examples use variables from the “area-wide model” dataset by the European Central Bank
(ECB) which is shipped with gretl in the AWM.gdt file. PCR is aggregate private real consumption
and YER is real GDP. The first command line above thus plots consumption against income as a
kind of Keynesian consumption function. More precisely, it produces a simple scatter plot with
an automatically linear fitted line. If this is executed in the gretl console the plot will be directly
shown in a new window, but if this line is contained in a script then instead a file with the plot
commands will be saved for later execution. The second example line changes this behavior for a
script command and forces the plot to be shown directly.

The third line instead asks for a plot of the two variables as two separate curves against time on
the x-axis. Each observation point is drawn separately with a certain symbol determined by gnuplot
defaults. If you add the option --with-T1ines the points will be connected with a continuous line
and the symbols omitted.

The second set of example lines above demonstrate how the fitted line in the scatter plot can be
controlled from gretl’s side. The option --fit=none overrides gnuplot’s default to draw a line if it
deems the fit to be “good enough”. The effect of --fit=inverse is to consider the variable on the
y-axis as a function of 1/X instead of X and draw the corresponding hyperbolic branch. For the
workings of a Loess fit (locally-weighted polynomial regression) please refer to the documentation
of the Toess function.

For more detail, consult the Gretl Command Reference.

The plot command block

The plot environment is a way to pass information to Gnuplot in a more structured way, so that
customization of basic plots becomes easier. It has the following characteristics:

The block starts with the plot keyword, followed by a required parameter: the name of a list, a
single series or a matrix. This parameter specifies the data to be plotted. The starting line may be
prefixed with the savename <- apparatus to save a plot as an icon in the GUI program. The block
ends with end plot.

Inside the block you have zero or more lines of these types, identified by an initial keyword:

option: specify a single option (details below)

options: specify multiple options on a single line; if more than one option is given on a line, the
options should be separated by spaces.

Titeral: a command to be passed to gnuplot literally

printf: a printf statement whose result will be passed to gnuplot literally; this allows the use of
string variables without having to resort to @-style string substitution.

The options available are basically those of the current gnuplot command, but with a few dif-
ferences. For one thing you don’t need the leading double-dash in an "option" (or "options") line.
Besides that,

e You can’t use the option --matrix=whatever with plot: that possibility is handled by pro-
viding the name of a matrix on the initial pTot line.

e The --input=filename option is not supported: use gnuplot for the case where you're
supplying the entire plot specification yourself.
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e The several options pertaining to the presence and type of a fitted line, are replaced in plot
by a single option fit which requires a parameter. Supported values for the parameter are:
none, linear, quadratic, cubic, inverse, semilog and loess. Example:

option fit=quadratic

As with gnupTot, the default is to show a linear fit in an X-Y scatter if it’s significant at the 10
percent level.

Here’s a simple example, the plot specification from the “bandplot” package, which shows how
to achieve the same result via the gnuplot command and a plot block, respectively—the latter
occupies a few more lines but is clearer

gnuplot 1 2 3 4 --with-Tines --matrix=plotmat \

--fit=none --output=display \

{ set Tinetype 3 Tc rgb "#0000ff"; set title "@title"; \
set nokey; set xlabel "@xname"; }

plot plotmat
options with-Tines fit=none
Titeral set Tinetype 3 T1c rgb "#0000ff"
Titeral set nokey
printf "set title \"%s\"", title
printf "set xTabel \"%s\"", xname

end plot --output=display

Note that --output=display is appended to end pTlot; also note that if you give a matrix to pTot
it’s assumed you want to plot all the columns. In addition, if you give a single series and the dataset
is time series, it’s assumed you want a time-series plot.

Script 6.1 contains a slightly more elaborate example: here we load the Mroz example dataset and
calculate the log of the individual’s wage. Then, we match the histogram of a discretized version
of the same variable (obtained via the aggregate () function) versus the theoretical density if data
were Gaussian.

There are a few points to note:

e The data for the plot are passed through a matrix in which we set column names via the
cnameset function; those names are then automatically used by the plot environment.

¢ In this example, we make extensive use of the set Titeral construct for refining the plot by
passing instruction to gnuplot; the power of gnuplot is impossible to overstate. We encourage
you to visit the “demos” version of gnuplot’s website (http://gnuplot.sourceforge.net/)
and revel in amazement.

e In the plot environment you can use all the quantities you have in your script. This is the
way we calibrate the histogram width (try setting the scalar k in the script to different values).
Note that the printf command has a special meaning inside a plot environment.

e The script displays the plot on your screen. If you want to save it to a file instead, replace
--output=display at the end with --output=7iTlename.

e It's OK to insert comments in the plot environment; actually, it’s a rather good idea to com-
ment as much as possible (as always)!

The output from the script is shown in Figure 6.3.
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Listing 6.1: Plotting the log wage from the Mroz example dataset [Download V]

set verbose off
open mroz87.gdt --quiet

series TWW = Tog(Ww)
scalar m = mean(1Ww)
scalar s = sd(Tww)

###
### prepare matrix with data for plot
###

# number of valid observations

scalar n = nobs(1Ww)

# discretize Tog wage

scalar k = 4

series disc_TWW = round(TWW*k)/k

# get frequencies

matrix f = aggregate(null, disc_Tww)
# add density

phi = dnorm((f[,1] - m)/s) / (s*k)

# put columns together and add Tlabels
plotmat = f[,2]./n ~ phi ~ f[,1]
strings cnames = defarray("frequency", "density", "log wage")
cnameset(plotmat, cnames)

###
### create plot
###

plot plotmat
# move Tlegend
Titeral set key outside rmargin
# set Tine style
Titeral set linetype 2 dashtype 2 Tinewidth 2
# set histogram color
Titeral set Tinetype 1 lc rgb "#777777"
# set histogram style
Titeral set style fill solid 0.25 border
# set histogram width
printf "set boxwidth %4.2f\n", 0.5/k
options with-Tines=2 with-boxes=1

end plot --output=display
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Figure 6.3: Output from listing 6.1

6.3 Boxplots

These plots (after Tukey and Chambers) display the distribution of a variable. Its shape depends
on a few quantities, defined as follows:

Xmin Sample minimum
Q: first quartile
m median
X mean
Q3 third quartile
Xmax Sample maximum
R =Q3 - Q; interquartile range

The central box encloses the middle 50 percent of the data, i.e. goes from Q; to Q3; therefore, its
height equals R. A line is drawn across the box at the median m and a “+” sign identifies the mean
X.

The length of the “whiskers” depends on the presence of outliers. The top whisker extends from
the top of the box up to a maximum of 1.5 times the interquartile range, but can be shorter if the
sample maximum is lower than that value; that is, it reaches min[xmax, Q3 + 1.5R]. Observations
larger than Q3 + 1.5R, if any, are considered outliers and represented individually via dots.> The
bottom whisker obeys the same logic, with obvious adjustments. Figure 6.4 provides an example
of all this by using the variable FAMINC from the sample dataset mroz87.

In the case of boxplots with confidence intervals, dotted lines show the limits of an approximate 90
percent confidence interval for the median. This is obtained by the bootstrap method, which can
take a while if the data series is very long. For details on constructing boxplots, see the entry for

3To give you an intuitive idea, if a variable is normally distributed, the chances of picking an outlier by this definition
are slightly below 0.7%.
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Figure 6.4: Sample boxplot

boxpTot in the Gretl Command Reference or use the Help button that appears when you select one
of the boxplot items under the menu item “View, Graph specified vars” in the main gretl window.

Factorized boxplots

A nice feature which is quite useful for data visualization is the conditional, or factorized boxplot.
This type of plot allows you to examine the distribution of a variable conditional on the value of
some discrete factor.

As an example, we’ll use one of the datasets supplied with gretl, that is rac3d, which contains an
example taken from Cameron and Trivedi (2013) on the health conditions of 5190 people. The
script below compares the unconditional (marginal) distribution of the number of illnesses in the
past 2 weeks with the distribution of the same variable, conditional on age classes.

open rac3d.gdt

# unconditional boxplot

boxpTot ILLNESS --output=display

# create a discrete variable for age class:

# 0 = below 20, 1 = between 20 and 39, etc

series age_class = floor(AGE/0.2)

# conditional boxplot

boxplot ILLNESS age_class --factorized --output=display

After running the code above, you should see two graphs similar to Figure 6.5. By comparing the
marginal plot to the factorized one, the effect of age on the mean number of illnesses is quite
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evident: by joining the green crosses you get what is technically known as the conditional mean
function, or regression function if you prefer.

ILLNESS Distribution of ILLNESS by age_class

ILLNESS

age_class

Figure 6.5: Conditional and unconditional distribution of illnesses
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Joining data sources

7.1 Introduction

Gretl provides two commands for adding data from file to an existing dataset in the program’s
workspace, namely append and join. The append command, which has been available for a long
time, is relatively simple and is described in the Gretl Command Reference. Here we focus on the
join command, which is much more flexible and sophisticated. This chapter gives an overview
of the functionality of join along with a detailed account of its syntax and options. We provide
several toy examples and discuss one real-world case at length.

First, a note on terminology: in the following we use the terms “left-hand” and “inner” to refer
to the dataset that is already in memory, and the terms “right-hand” and “outer” to refer to the
dataset in the file from which additional data are to be drawn.

Two main features of join are worth emphasizing at the outset:

e “Key” variables can be used to match specific observations (rows) in the inner and outer
datasets, and this match need not be 1 to 1.

¢ A row filter may be applied to screen out unwanted observations in the outer dataset.

As will be explained below, these features support rather complex concatenation and manipulation
of data from different sources.

A further aspect of join should be noted—one that makes this command particularly useful when
dealing with very large data files. That is, when gretl executes a join operation it does not, in gen-
eral, read into memory the entire content of the right-hand side dataset. Only those columns that
are actually needed for the operation are read in full. This makes join faster and less demanding
of computer memory than the methods available in most other software. On the other hand, gretl’s
asymmetrical treatment of the “inner” and “outer” datasets in join may require some getting used
to, for users of other packages.

7.2 Basic syntax

The minimal invocation of joinis
join filename varname

where filename is the name of a data file and varname is the name of a series to be imported.
Only two sorts of data file are supported at present: delimited text files (where the delimiter may
be comma, space, tab or semicolon) and “native” gretl data files (gdt or gdtb). A series named
varname may already be present in the left-hand dataset, but that is not required. The series to be
imported may be numerical or string-valued. For most of the discussion below we assume that just
a single series is imported by each join command, but see section 7.7 for an account of multiple
imports.

The effect of the minimal version of join is this: gretl looks for a data column labeled varname in
the specified file; if such a column is found and the number of observations on the right matches
the number of observations in the current sample range on the left, then the values from the right
are copied into the relevant range of observations on the left. If varname does not already exist
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on the left, any observations outside of the current sample are set to NA; if it exists already then
observations outside of the current sample are left unchanged.

The case where you want to rename a series on import is handled by the --data option. This option
has one required argument, the name by which the series is known on the right. At this point we
need to explain something about right-hand variable names (column headings).

Right-hand names

We accept on input arbitrary column heading strings, but if these strings do not qualify as valid
gretl identifiers they are automatically converted, and in the context of join you must use the
converted names. A gretl identifier must start with a letter, contain nothing but (ASCII) letters,
digits and the underscore character, and must not exceed 31 characters. The rules used in name
conversion are:

1. Skip any leading non-letters.

2. Until the 31-character is reached or the input is exhausted: transcribe “legal” characters; skip
“illegal” characters apart from spaces; and replace one or more consecutive spaces with an
underscore, unless the last character transcribed is an underscore in which case space is
skipped.

In the unlikely event that this policy yields an empty string, we replace the original with coln,
where n is replaced by the 1-based index of the column in question among those used in the
join operation. If you are in doubt regarding the converted name of a given column, the function
fixname() can be used as a check: it takes the original string as an argument and returns the
converted name. Examples:

? eval fixname('"valid_identifier")
valid_identifier

? eval fixname("12. Some name'")
Some_name

Returning to the use of the --data option, suppose we have a column headed "12. Some name"
on the right and wish to import it as x. After figuring how the right-hand name converts, we can do

join foo.csv x --data="Some_name"

No right-hand names?

Some data files have no column headings; they jump straight into the data (and you need to deter-
mine from accompanying documentation what the columns represent). Since gretl expects column
headings, you have to take steps to get the importation right. It is generally a good idea to insert a
suitable header row into the data file. However, if for some reason that’s not practical, you should
give the --no-header option, in which case gretl will name the columns on the right as co11, co12
and so on. If you do not do either of these things you will likely lose the first row of data, since
gretl will attempt to make variable names out of it, as described above.

7.3 Filtering

Rows from the outer dataset can be filtered using the --filter option. The required parameter
for this option is a Boolean condition, that is, an expression which evaluates to non-zero (true,
include the row) or zero (false, skip the row) for each of the outer rows. The filter expression may
include any of the following terms: up to three “right-hand” series (under their converted names as
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explained above); scalar or string variables defined “on the left”; any of the operators and functions
available in gretl (including user-defined functions); and numeric or string constants.

Here are a few simple examples of potentially valid filter options (assuming that the specified right-
hand side columns are found):

# 1. relationship between two right-hand variables
--filter="x15<=x17"

# 2. comparison of right-hand variable with constant
--filter="nkids>2"

# 3. comparison of string-valued right-hand variable with string constant
--fiTter="SEX==\"F\""

# 4. filter on valid values of a right-hand variable
--filter=Imissing(income)

# 5. compound condition
--filter="x < 100 && (x > 0 || y > 0O)"

Note that if you are comparing against a string constant (as in example 3 above) it is necessary
to put the string in “escaped” double-quotes (each double-quote preceded by a backslash) so the
interpreter knows that F is not supposed to be the name of a variable.

It is safest to enclose the whole filter expression in double quotes, however this is not strictly
required unless the expression contains spaces or the equals sign.

In general, an error is flagged if a missing value is encountered in a series referenced in a filter
expression. This is because the condition then becomes indeterminate; taking example 2 above, if
the nkids value is NA on any given row we are not in a position to evaluate the condition nkids>2.
However, you can use the missing() function—or ok (), which is a shorthand for !missing() —if
you need a filter that keys off the missing or non-missing status of a variable.

7.4 Matching with keys

Things get interesting when we come to key-matching. The purpose of this facility is perhaps best
introduced by example. Suppose that (as with many survey and census-based datasets) we have a
dataset that is composed of two or more related files, each having a different unit of observation;
for example we have a “persons” data file and a “households” data file. Table 7.1 shows a simple,
artificial case. The file people.csv contains a unique identifier for the individuals, pid. The
households file, hholds. csv, contains the unique household identifier hid, which is also present
in the persons file.

As a first example of join with keys, let’'s add the household-level variable xh to the persons
dataset:

open people.csv --quiet
join hholds.csv xh --ikey=hid
print --byobs

The basic key option is named ikey; this indicates “inner key”, that is, the key variable found in the
left-hand or inner dataset. By default it is assumed that the right-hand dataset contains a column of
the same name, though as we’ll see below that assumption can be overridden. The join command
above says, find a series named xh in the right-hand dataset and add it to the left-hand one, using
the values of hid to match rows. Looking at the data in Table 7.1 we can see how this should
work. Persons 1 and 2 are both members of household 1, so they should both get values of 1 for
xh; persons 3 and 4 are members of household 2, so that xh = 4; and so on. Note that the order
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in which the key values occur on the right-hand side does not matter. The gretl output from the
print command is shown in the lower panel of Table 7.1.

people.csv hholds.csv

pid,hid,gender,age,xp hid, country,xh

1,1,M,50,1 1,Us,1

2,1,F,40,2 6,IT,12

3,2,M,30,3 3,UK,6

4,2,F,25,2 4,1IT,8

5,3,M,40,3 2,US,4

6,4,F,35,4 5,IT,10

7,4,M,70,3

8,4,F,60,3

9,5,F,20,4

10,6,M,40,4

pid hid xh

1 1 1
2 1 1
3 2 4
4 2 4
5 3 6
6 4 8
7 4 8
8 4 8
9 5 10
10 6 12

Table 7.1: Two linked CSV data files, and the effect of a join

Note that key variables are treated conceptually as integers. If a specified key contains fractional
values these are truncated.

Two extensions of the basic key mechanism are available.

o If the outer dataset contains a relevant key variable but it goes under a different name from
the inner key, you can use the --okey option to specify the outer key. (As with other right-
hand names, this does not have to be a valid gretl identifier.) So, for example, if hholds.csv
contained the hid information, but under the name HHOLD, the join command above could
be modified as

join hholds.csv xh --ikey=hid --okey=HHOLD

o If a single key is not sufficient to generate the matches you want, you can specify a double key
in the form of two series names separated by a comma; in this case the importation of data is
restricted to those rows on which both keys match. The syntax here is, for example

join foo.csv x --ikey=keyl,key2

Again, the --okey option may be used if the corresponding right-hand columns are named
differently. The same number of keys must be given on the left and the right, but when a
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double key is used and only one of the key names differs on the right, the name that is in
common may be omitted (although the comma separator must be retained). For example, the
second of the following lines is acceptable shorthand for the first:

join foo.csv x --ikey=keyl,Lkey2 --okey=keyl,Rkey?2
join foo.csv x --ikey=keyl,Lkey2 --okey=,Rkey2

The number of key-matches

The example shown in Table 7.1 is an instance of a 1 to 1 match: applying the matching criterion
produces exactly one value of the variable xh corresponding to each row of the inner dataset. Three
other possibilities arise:

e Some rows on the left have multiple matches on the right (“1 to n matching”).
¢ Some rows on the right have multiple matches on the left (“n to 1 matching”).

e Some rows in the inner dataset have no match on the right.

The first case is addressed in detail in the next section; here we discuss the others.

The n to 1 case is straightforward. If a particular key value (or combination of key values) occurs at
each of n > 1 observations on the left but at a single observation on the right, then the right-hand
value is entered at each of the matching slots on the left.

The handling of the case where there’s no match on the right depends on whether the join operation
is adding a new series to the inner dataset or modifying an existing one. If it's a new series, then
unmatched rows automatically get NA for the imported data. However, if join is pulling in values
for a series already present on the left only matched rows will be updated. In other words we do
not overwite an existing value on the left with NA when there’s no match on the right.

These defaults may not produce the desired results in every case but gretl provides the means to
modify the effect if need be. We will illustrate with two scenarios.

First consider adding a new series recording “number of hours worked” when the inner dataset
contains individuals and the outer file contains data on jobs. If an individual does not appear in
the jobs file, we may want to take her hours worked as implicitly zero rather than NA. In this case
gretl’s misszero() function can be used to turn NA into O in the imported series.

Second, consider updating a series via join when the outer file is presumed to contain all available
updated values, such that “no match” should be taken as an implicit NA. In that case we want the
(presumably out-of-date) values on any unmatched rows to be overwritten with NA. Let the series
in question be called x (both on the left and the right) and let the common key be called pid. The
solution is then

join update.csv tmpvar --data=x --ikey=pid
X = tmpvar

As a new variable, tmpvar will get NA for all unmatched rows; we then transcribe its values into
x. In a more complicated case one might use the smp1 command to limit the sample range before
assigning tmpvar to x, or use the conditional assignment operator 7 :.

One further point: given some missing values in an imported series you may want to know whether
(a) the NAs were explicitly represented in the outer data file or (b) they arose due to “no match”. You
can find this out by using a method described in the following section, namely the count variant of
the aggregation option: this will give you a series with 0 values for all and only unmatched rows.
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7.5 Aggregation

In the case of 1 to n matching of rows (n > 1) the user must specify an “aggregation method”; that
is, a method for mapping from n rows down to one. This is handled by the --aggr option which
requires a single argument from the following list:

Code Value returned

count count of matches

avg mean of matching values

sum sum of matching values

min minimum of matching values

max maximum of matching values
seq:i the i™ matching value (e.g. seq:2)

min(aux) minimum of matching values of auxiliary variable
max (aux) maximum of matching values of auxiliary variable

Note that the count aggregation method is special, in that there is no need for a “data series” on
the right; the imported series is simply a function of the specified key(s). All the other methods
require that “actual data” are found on the right. Also note that when count is used, the value
returned when no match is found is (as one might expect) zero rather than NA.

The basic use of the seq method is shown above: following the colon you give a positive integer rep-
resenting the (1-based) position of the observation in the sequence of matched rows. Alternatively,
a negative integer can be used to count down from the last match (seq:-1 selects the last match,
seq: -2 the second-last match, and so on). If the specified sequence number is out of bounds for a
given observation this method returns NA.

Referring again to the data in Table 7.1, suppose we want to import data from the persons file into
a dataset established at household level. Here’s an example where we use the individual age data
from people.csv to add the average and minimum age of household members.

open hholds.csv --quiet
join people.csv avgage --ikey=hid --data=age --aggr=avg
join people.csv minage --ikey=hid --data=age --aggr=min

Here’s a further example where we add to the household data the sum of the personal data xp, with
the twist that we apply filters to get the sum specifically for household members under the age of
40, and for women.

open hholds.csv --quiet
join people.csv young_xp --ikey=hid --filter="age<40" --data=xp --aggr=sum
join people.csv female_xp --ikey=hid --filter="gender==\"F\"" --data=xp --aggr=sum

The possibility of using an auxiliary variable with the min and max modes of aggregation gives extra
flexibility. For example, suppose we want for each household the income of its oldest member:

open hholds.csv --quiet
join people.csv oldest_xp --ikey=hid --data=xp --aggr=max(age)

7.6 String-valued key variables

The examples above use numerical variables (household and individual ID numbers) in the match-
ing process. It is also possible to use string-valued variables, in which case a match means that the
string values of the key variables compare equal (with case sensitivity). When using double keys,
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you can mix numerical and string keys, but naturally you cannot mix a string variable on the left
(via ikey) with a numerical one on the right (via okey), or vice versa.

Here’s a simple example. Suppose that alongside hholds.csv we have a file countries.csv with
the following content:

country,GDP
UK, 100
us, 500
IT,150
FR,180

The variable country, which is also found in hholds.csv, is string-valued. We can pull the GDP of
the country in which the household resides into our households dataset with

open hholds.csv -q
join countries.csv GDP --ikey=country

which gives
hid country GDP

500
150
100
150
500
150

AUV hAh WN R
VNN WO R
NEFENWNR

7.7 Importing multiple series

The examples given so far have been limited in one respect. While several columns in the outer data
file may be referenced (as keys, or in filtering or aggregation) only one column has actually provided
data—and correspondingly only one series in the inner dataset has been created or modified —per
invocation of join. However, join can handle the importation of several series at once. This
section gives an account of the required syntax along with certain restrictions that apply to the
multiple-import case.

There are two ways to specify more than one series for importation:

1. The varname field in the command can take the form of a space-separated list of names rather
than a single name.

2. Alternatively, you can give the name of an array of strings in place of varname: the elements
of this array should be the names of the series to import.

Here are the limitations:

1. The --data option, which permits the renaming of a series on import, is not available. When
importing multiple series you are obliged to accept their “outer” names, fixed up as described
in section 7.2.

2. While the other join options are available, they necessarily apply uniformly to all the series
imported via a given command. This means that if you want to import several series but using
different keys, filters or aggregation methods you must use a sequence of commands.

Here are a couple of examples of multiple imports.
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# open base datafile containing keys
open PUMSdata.gdt

# join using a Tist of import names
join ss13pnc.csv SCHL WAGP WKHP --ikey=SERIALNO,SPORDER

# using a strings array: may be worthwhile if the array
# will be used for more than one purpose

strings S = defarray("SCHL", "WAGP", "WKHP'")

join ssl3pnc.csv S --ikey=SERIALNO, SPORDER

7.8 A real-world case

For a real use-case for join with cross-sectional data, we turn to the Bank of Italy’s Survey on House-
hold Income and Wealth (SHIW).! In ASCII form the 2010 survey results comprise 47 MB of data in
29 files. In this exercise we will draw on five of the SHIW files to construct a replica of the dataset
used in Thomas Mroz’s famous paper (Mroz, 1987) on women’s labor force participation, which
contains data on married women between the age of 30 and 60 along with certain characteristics
of their households and husbands.

Our general strategy is as follows: we create a “core” dataset by opening the file carcoml0.csv,
which contains basic data on the individuals. After dropping unwanted individuals (all but married
women), we use the resulting dataset as a base for pulling in further data via the join command.

The complete script to do the job is given in the Appendix to this chapter; here we walk through
the script with comments interspersed. We assume that all the relevant files from the Bank of Italy
survey are contained in a subdirectory called SHIW.

Starting with carcom10.csv, we use the --cols option to the open command to import specific
series, namely NQUEST (household ID number), NORD (sequence number for individuals within each
household), SEX (male = 1, female = 2), PARENT (status in household: 1 = head of household, 2 =
spouse of head, etc.), STACIV (marital status: married = 1), STUDIO (educational level, coded from
1 to 8), ETA (age in years) and ACOM4C (size of town).

open SHIW/carcomlQO.csv --cols=1,2,3,4,9,10,29,41

We then restrict the sample to married women from 30 to 60 years of age, and additionally restrict
the sample of women to those who are either heads of households or spouses of the head.

smpl SEX==2 && ETA>=30 && ETA<=60 && STACIV==1 --restrict
smpl PARENT<3 --restrict

For compatibility with the Mroz dataset as presented in the gretl data file mroz87.gdt, we rename
the age and education variables as WA and WE respectively, we compute the CIT dummy and finally
we store the reduced base dataset in gretl format.

rename ETA WA
rename STUDIO WE
series CIT = (ACOM4C > 2)

store mroz_rep.gdt

The next step will be to get data on working hours from the jobs file al1bl.csv. There’s a com-
plication here. We need the total hours worked over the course of the year (for both the women

IDetails of the survey can be found at http://www.bancaditalia.it/statistiche/indcamp/bilfait/dismicro.
The ASCII (CSV) data files for the 2010 survey are available at http://www.bancaditalia.it/statistiche/indcamp/
bilfait/dismicro/annuale/ascii/ind1l0_ascii.zip.


http://www.bancaditalia.it/statistiche/indcamp/bilfait/dismicro
http://www.bancaditalia.it/statistiche/indcamp/bilfait/dismicro/annuale/ascii/ind10_ascii.zip
http://www.bancaditalia.it/statistiche/indcamp/bilfait/dismicro/annuale/ascii/ind10_ascii.zip
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and their husbands). This is not available as such, but the variables ORETOT and MESILAV give,
respectively, average hours worked per week and the number of months worked in 2010, each on a
per-job basis. If each person held at most one job over the year we could compute his or her annual
hours as

HRS = ORETOT * 52 * MESILAV/12

However, some people had more than one job, and in this case what we want is the sum of annual
hours across their jobs. We could use join with the seq aggregation method to construct this sum,
but it is probably more straightforward to read the al1bl data, compute the HRS values per job as
shown above, and save the results to a temporary CSV file.

open SHIW/allbl.csv --cols=1,2,8,11 --quiet
series HRS = misszero(ORETOT) * 52 * misszero(MESILAV) /12
store HRS.csv NQUEST NORD HRS

Now we can reopen the base dataset and join the hours variable from HRS. csv. Note that we need
a double key here: the women are uniquely identified by the combination of NQUEST and NORD. We
don’t need an okey specification since these keys go under the same names in the right-hand file.
We define labor force participation, LFP, based on hours.

open mroz_rep.gdt

join HRS.csv WHRS --ikey=NQUEST,NORD --data=HRS --aggr=sum
WHRS = misszero(WHRS)

LFP = WHRS > 0

For reference, here’s how we could have used seq to avoid writing a temporary file:

join SHIW/allbl.csv njobs --ikey=NQUEST,NORD --data=ORETOT --aggr=count

series WHRS = 0

Toop i=1..max(njobs)
join SHIW/allbl.csv htmp --ikey=NQUEST,NORD --data=ORETOT --aggr="seq:$i"
join SHIW/allbl.csv mtmp --ikey=NQUEST,NORD --data=MESILAV --aggr="seq:$i"
WHRS += misszeroChtmp) * 52 * misszero(mtmp) /12

endTloop

To generate the work experience variable, AX, we use the file Tavoro.csv: this contains a variable
named ETALAV which records the age at which the person first started work.

join SHIW/lavoro.csv ETALAV --1ikey=NQUEST,NORD
series AX = misszero(WA - ETALAV)

We compute the woman’s hourly wage, WW, as the ratio of total employment income to annual
working hours. This requires drawing the series YL (payroll income) and YM (net self-employment
income) from the persons file rper10.csv.

join SHIW/rperlO.csv YL YM --ikey=NQUEST,NORD --aggr=sum
series WW = LFP ? (YL + YM)/WHRS : O

The family’s net disposable income is available as Y in the file rfaml10.csv; we import this as
FAMINC.

join SHIW/rfamlO.csv FAMINC --ikey=NQUEST --data=Y

Data on number of children are now obtained by applying the count method. For the Mroz repli-
cation we want the number of children under the age of 6, and also the number aged 6 to 18.
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join SHIW/carcoml0.csv KIDS --ikey=NQUEST --aggr=count --filter="ETA<=18"
join SHIW/carcoml0.csv KL6 --ikey=NQUEST --aggr=count --filter=ETA<6
series K618 = KIDS - KL6

We want to add data on the women’s husbands, but how do we find them? To do this we create an
additional inner key which we’ll call H_ID (husband ID), by sub-sampling in turn on the observations
falling into each of two classes: (a) those where the woman is recorded as head of household and
(b) those where the husband has that status. In each case we want the individual ID (NORD) of the
household member whose status is complementary to that of the woman in question. So for case
(a) we subsample using PARENT==1 (head of household) and filter the join using PARENT==2 (spouse
of head); in case (b) we do the converse. We thus construct H_ID piece-wise.

# for women who are household heads

smpl PARENT==1 --restrict --replace

join SHIW/carcomlO.csv H_ID --ikey=NQUEST --data=NORD --filter="PARENT==2"
# for women who are not household heads

smpl PARENT==2 --restrict --replace

join SHIW/carcomlO.csv H_ID --ikey=NQUEST --data=NORD --filter="PARENT==1"
smp1l full

Now we can use our new inner key to retrieve the husbands’ data, matching H_ID on the left with
NORD on the right within each household.

join SHIW/carcomlO.csv HA --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=ETA
join SHIW/carcoml0.csv HE --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=STUDIO
join HRS.csv HHRS --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=HRS --aggr=sum
HHRS = misszero(HHRS)

The remainder of the script is straightforward and does not require discussion here: we recode
the education variables for compatibility; delete some intermediate series that are not needed any
more; add informative labels; and save the final product. See the Appendix for details.

To compare the results from this dataset with those from the earlier US data used by Mroz, one can
copy the input file heckit.inp (supplied with the gretl package) and substitute mroz_rep.gdt for
mroz87.gdt. It turns out that the results are qualitatively very similar.

7.9 The representation of dates

Up to this point all the data we have considered have been cross-sectional. In the following sections
we discuss data that have a time dimension, and before proceeding it may be useful to say some-
thing about the representation of dates. Gretl takes the ISO 8601 standard as its reference point
but provides mean of converting dates provided in other formats; it also offers a set of calendrical
functions for manipulating dates (isodate, isoconv, epochday and others).

ISO 8601 recognizes two formats for daily dates, “extended” and “basic”. In both formats dates
are given as 4-digit year, 2-digit month and 2-digit day, in that order. In extended format a dash
is inserted between the fields—as in 2013-10-21 or more generally YYYY-MM-DD —while in basic
format the fields are run together (YYYYMMDD). Extended format is more easily parsed by human
readers while basic format is more suitable for computer processing, since one can apply ordinary
arithmetic to compare dates as equal, earlier or later. The standard also recognizes YYYY-MM as
representing year and month, e.g. 2010-11 for November 2010,2 as well as a plain four-digit number
for year alone.

One problem for economists is that the “quarter” is not a period covered by ISO 8601. This could
be presented by YYYY-Q (with only one digit following the dash) but in gretl output we in fact use a
colon, as in 2013:2 for the second quarter of 2013. (For printed output of months gretl also uses

2The form YYYYMM is not recognized for year and month.
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a colon, as in 2013:06. A difficulty with following ISO here is that in a statistical context a string
such as 1980-10 may look more like a subtraction than a date.) Anyway, at present we are more
interested in the parsing of dates on input rather than in what gretl prints. And in that context note
that “excess precision” is acceptable: a month may be represented by its first day (e.g. 2005-05-01
for May, 2005), and a quarter may be represented by its first month and day (2005-07-01 for the
third quarter of 2005).

Some additional points regarding dates will be taken up as they become relevant in practical cases
of joining data.

7.10 Time-series data

Suppose our left-hand dataset is recognized by gretl as time series with a supported frequency
(annual, quarterly, monthly, weekly, daily or hourly). This will be the case if the original data were
read from a file that contained suitable time or date information, or if a time-series interpretation
has been imposed using either the setobs command or its GUI equivalent. Then—apart, perhaps,
from some very special cases—joining additional data is bound to involve matching observations
by time-period. In this case, contrary to the cross-sectional case, the inner dataset has a natural
ordering of which gretl is aware; hence, no “inner key” is required.

If, in addition, the file from data which are to be joined is in native gretl format and contains time-
series information, keys are not needed at all. Three cases can arise: the frequency of the outer
dataset may be the same, lower or higher than that of the inner dataset. In the first two cases
join should work without any special apparatus; lower-frequency values will be repeated for each
high-frequency period. In the third case, however, an aggregation method must be specified: gretl
needs to know how to map higher-frequency data into the existing dataset (by averaging, summing,
or whatever).

If the outer data file is not in native gretl format we need a means of identifying the period of each
observation on the right, an outer key which we’ll call a “time key”. The join command provides
a simple (but limited) default for extracting period information from the outer data file, plus an
option that can be used if the default is not applicable, as follows.

e The default assumptions are: (1) the time key appears in the first column; (2) the heading
of this column is either left blank or is one of obs, date, year, period, observation, or
observation_date (on a case-insensitive comparison); and (3) the time format conforms
to ISO 8601 where applicable (“extended” daily date format YYYY-MM-DD, monthly format
YYYY-MM, or annual format YYYY).

o If dates do not appear in the first column of the outer file, or if the column heading or format
is not as just described, the --tkey option can be used to indicate which column should be
used and/or what format should be assumed.

Setting the time-key column and/or format

The --tkey option requires a parameter holding the name of the column in which the time key
is located and/or a string specifying the format in which dates/times are written in the time-key
column. This parameter should be enclosed in double-quotes. If both elements are present they
should be separated by a comma; if only a format is given it should be preceded by a comma. Some
examples:

--tkey="Period,%m/%d/%Y"
--tkey="Period"
--tkey="obsperiod"
--tkey=",%Ym%m"
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The first of these applies if Period is not the first column on the right, and dates are given in the
US format of month, day, year, separated by slashes. The second implies that although Period is
not the first column, the date format is ISO 8601. The third again implies that the date format is
OK; here the name is required even if obsperiod is the first column since this heading is not one
recognized by gretl’s heuristic. The last example implies that dates are in the first column (with

one of the recognized headings), but are given in the non-standard format year, “m”, month.

The date format string should be composed using the codes employed by the POSIX function
strptime; Table 7.2 contains a list of the most relevant codes.3

Code Meaning
%% The % character.

%b The month name according to the current locale, either abbreviated
or in full.

%C The century number (0-99).

%d The day of month (1-31).

%D  Equivalent to %m/%d/%y. (This is the American style date, very con-
fusing to non-Americans, especially since %d/%m/%y is widely used in
Europe. The ISO 8601 standard format is %Y-%m-%d.)

%H  The hour (0-23).

%j The day number in the year (1-366).

%m The month number (1-12).

%n  Arbitrary whitespace.

%q The quarter (1-4).

%w The weekday number (0-6) with Sunday = 0.

%y The year within century (0-99). When a century is not otherwise spec-
ified, values in the range 69-99 refer to years in the twentieth century
(1969-1999); values in the range 00-68 refer to years in the twenty-
first century (2000-2068).

%Y The year, including century (for example, 1991).

Table 7.2: Date format codes

Example: daily stock prices

We show below the first few lines of a file named IBM.csv containing stock-price data for IBM
corporation.

Date,Open,High,Low,Close,Volume,Adj Close

2013-08-02,195.50,195.50,193.22,195.16,3861000,195.16
2013-08-01,196.65,197.17,195.41,195.81,2856900,195.81
2013-07-31,194.49,196.91,194.49,195.04,3810000,195.04

Note that the data are in reverse time-series order —that won’t matter to join, the data can appear
in any order. Also note that the first column is headed Date and holds daily dates as ISO 8601
extended. That means we can pull the data into gretl very easily. In the following fragment we
create a suitably dimensioned empty daily dataset then rely on the default behavior of join with
time-series data to import the closing stock price.

nulldata 500
setobs 5 2012-01-01
join IBM.csv Close

3The %q code for quarter is not present in strptime; it is added for use with join since quarterly data are common
in macroeconomics.
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To make explicit what we’re doing, we could accomplish exactly the same using the --tkey option:

join IBM.csv Close --tkey="Date,%Y-%m-%d"

Example: OECD quarterly data

Table 7.3 shows an excerpt from a CSV file provided by the OECD statistical site (stat.oecd.org)
in response to a request for GDP at constant prices for several countries.*

Frequency,Period,Country,Value,Flags
"Quarterly","Q1-1960","France",463876.148126845,E
"Quarterly","Q1-1960","Germany",768802.119278467 ,E
"Quarterly","Q1-1960","Italy",414629.791450547 ,E
"Quarterly","Q1-1960","United Kingdom",578437.090291889,E
"Quarterly","Q2-1960","France",465618.977328614,E
"Quarterly","Q2-1960","Germany",782484.138122549,E
"Quarterly","Q2-1960","Italy",420714.910290157,E
"Quarterly","Q2-1960","United Kingdom",572853.474696578,E
"Quarterly","Q3-1960","France",469104.41925852,E
"Quarterly","Q3-1960","Germany",809532.161494483,E
"Quarterly","Q3-1960","Italy",426893.675840156,E
"Quarterly","Q3-1960","United Kingdom",581252.066618986,E
"Quarterly","Q4-1960","France",474664.327992619,E
"Quarterly","Q4-1960","Germany",817806.132384948 ,E
"Quarterly","Q4-1960","Italy",427221.338414114,E

Table 7.3: Example of CSV file as provided by the OECD statistical website

This is an instance of data in what we call atomic format, that is, a format in which each line of the
outer file contains a single data-point and extracting data mainly requires filtering the appropriate
lines. The outer time key is under the Period heading, and has the format Q<quarter>-<years>.
Assuming that the file in Table 7.3 has the name oecd.csv, the following script reconstructs the
time series of Gross Domestic Product for several countries:

nulldata 220
setobs 4 1960:1

join oecd.csv FRA --tkey="Period,Q%q-%Y" --data=Value --filter="Country==\"France\""

join oecd.csv GER --tkey="Period,Q%q-%Y" --data=Value --filter="Country==\"Germany\""

join oecd.csv ITA --tkey="Period,Q%q-%Y" --data=Value --filter="Country==\"Italy\""

join oecd.csv UK --tkey="Period,Q%q-%Y" --data=Value --filter="Country==\"United Kingdom\""

Note the use of the format codes %q for the quarter and %Y for the 4-digit year. A touch of elegance
could have been added by storing the invariant options to join using the setopt command, as in

setopt join persist --tkey="Period,Q%q-%Y" --data=Value
join oecd.csv FRA --filter="Country==\"France\""

join oecd.csv GER --filter="Country==\"Germany\
join oecd.csv ITA --filter="Country==\"Italy\""
join oecd.csv UK --filter="Country==\"United Kingdom\""
setopt join clear

If one were importing a large number of such series it might be worth rewriting the sequence of
joins as a loop, as in

4Retrieved 2013-08-05. The OECD files in fact contain two leading columns with very long labels; these are irrelevant
to the present example and can be omitted without altering the sample script.
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string countries = sprintf("France Germany Italy \"United Kingdom\"")
string vnames = "FRA GER ITA UK"
setopt join persist --tkey="Period,Q%q-%Y" --data=Value

Toop foreach i @countries

string vname = strsplit(vnames, i)

join oecd.csv @vname --filter="Country==\"$i\
endloop
setopt join clear

7.11 Special handling of time columns

When dealing with straight time series data the tkey mechanism described above should suffice
in almost all cases. In some contexts, however, time enters the picture in a more complex way;
examples include panel data (see section 7.12) and so-called realtime data (see chapter 8). To handle
such cases join provides the --tconvert option. This can be used to select certain columns in
the right-hand data file for special treatment: strings representing dates in these columns will be
converted to numerical values: 8-digit numbers on the pattern YYYYMMDD (ISO basic daily format).
Once dates are in this form it is easy to use them in key-matching or filtering.

By default it is assumed that the strings in the selected columns are in ISO extended format,
YYYY-MM-DD. If that is not the case you can supply a time-format string using the --tconv-fmt
option. The format string should be written using the codes shown in Table 7.2.

Here are some examples:

# select one column for treatment
--tconvert=start_date

# select two columns for treatment
--tconvert="start_date,end_date"

# specify US-style daily date format
-—tconv-fmt="%m/%d/%Y"

# specify quarterly date-strings (as in 2004ql)
--tconv-fmt="%Yq%q"

Some points to note:

o If a specified column is not selected for a substantive role in the join operation (as data to be
imported, as a key, or as an auxiliary variable for use in aggregation) the column in question
is not read and so no conversion is carried out.

e If a specified column contains numerical rather than string values, no conversion is carried
out.

e If a string value in a selected column fails parsing using the relevant time format (user-
specified or default), the converted value is NA.

¢ On successful conversion, the output is always in daily-date form as stated above. If you
specify a monthly or quarterly time format, the converted date is the first day of the month
or quarter.

7.12 Panel data

In section 7.10 we gave an example of reading quarterly GDP data for several countries from an
OECD file. In that context we imported each country’s data as a distinct time-series variable. Now
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suppose we want the GDP data in panel format instead (stacked time series). How can we do this
with join?

As a reminder, here’s what the OECD data look like:

Frequency,Period,Country,Value,Flags
"Quarterly","Q1l-1960","France",463876.148126845,E
"Quarterly","Q1-1960","Germany",768802.119278467,E
"Quarterly","Q1-1960","Italy",414629.791450547 ,E
"Quarterly","Q1-1960","United Kingdom",578437.090291889,E
"Quarterly","Q2-1960","France",465618.977328614,E

and so on. If we have four countries and quarterly observations running from 1960:1 to 2013:2 (T
= 214 quarters) we might set up our panel workspace like this:

scalar N 4

scalar T 214

scalar NT = N*T

nulldata NT --preserve

setobs T 1.1 --stacked-time-series

The relevant outer keys are obvious: Country for the country and Period for the time period. Our
task is now to construct matching keys in the inner dataset. This can be done via two panel-specific
options to the setobs command. Let’s work on the time dimension first:

setobs 4 1960:1 --panel-time
series quarter = $obsdate

This variant of setobs allows us to tell gretl that time in our panel is quarterly, starting in the
first quarter of 1960. Having set that, the accessor $obsdate will give us a series of 8-digit dates
representing the first day of each quarter— 19600101, 19600401, 19600701, and so on, repeating
for each country. As we explained in section 7.11, we can use the --tconvert option on the outer
series Period to get exactly matching values (in this case using a format of Q%q-%Y for parsing the
Period values).

Now for the country names:

string cstrs = sprintf("France Germany Italy \"United Kingdom\"™")
setobs country cstrs --panel-groups

Here we write into the string cstrs the names of the countries, using escaped double-quotes to
handle the space in “United Kingdom”, then pass this string to setobs with the --panel-groups
option, preceded by the identifier country. This asks gretl to construct a string-valued series
named country, in which each name will repeat T times.

We’re now ready to join. Assuming the OECD file is named oecd. csv we do
join oecd.csv GDP --data=Value \

--ikey=country,quarter --okey=Country,Period \
--tconvert=Period --tconv-fmt="Q%q-%Y"

Other input formats
The OECD file discussed above is in the most convenient format for join, with one data-point per
line. But sometimes we may want to make a panel from a data file structured like this:

# Real GDP
Period,France,Germany,Italy,"United Kingdom"
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"Q1-1960",463863,768757,414630,578437
"Q2-1960",465605,782438,420715,572853
"Q3-1960",469091,809484,426894,581252
"Q4-1960",474651,817758,427221,584779
"Q1-1961",482285,826031,442528,594684

Call this file side_by_side.csv. Assuming the same initial set-up as above, we can panelize the
data by setting the sample to each country’s time series in turn and importing the relevant column.
The only point to watch here is that the string “United Kingdom”, being a column heading, will
become United_Kingdom on importing (see section 7.2) so we'll need a slightly different set of
country strings.

string cstrs = "France Germany Italy United_Kingdom"
setobs country cstrs --panel-groups
loop foreach i @cstrs
smpl country=="$%$i" --restrict --replace
join side_by_side.csv GDP --data=$i \
--ikey=quarter --okey=Period \
--tconvert=Period --tconv-fmt="Q%q-%Y"
endTloop
smp1 full

If our working dataset and the outer data file are dimensioned such that there are just as many
time-series observations on the right as there are time slots on the left—and the observations
on the right are contiguous, in chronological order, and start on the same date as the working
dataset—we could dispense with the key apparatus and just use the first line of the join command
shown above. However, in general it is safer to use keys to ensure that the data end up in correct
registration.

7.13 Memo: join options

Basic syntax: join filename varname(s) | options ]

flag effect

--data Give the name of the data column on the right, in case it differs from
varname (7.2); single import only

--filter Specify a condition for filtering data rows (7.3)

--ikey Specify up to two keys for matching data rows (7.4)

--okey Specify outer key name(s) in case they differ the inner ones (7.4)

--aggr Select an aggregation method for 1 to n joins (7.5)

--tkey Specify right-hand time key (7.10)

--tconvert Select outer date columns for conversion to numeric form (7.11)
--tconv-fmt Specify a format for use with tconvert (7.11)

--no-header Treat the first row on the right as data (7.2)

--verbose Report on progress in reading the outer data



Chapter 7. Joining data sources

Appendix: the full Mroz data script

# start with everybody; get gender, age and a few other variables
# directly while we’re at it
open SHIW/carcomlO.csv --cols=1,2,3,4,9,10,29,41

# subsample on married women between the ages of 30 and 60

smpl SEX==2 && ETA>=30 && ETA<=60 && STACIV==1 --restrict

# for simplicity, restrict to heads of households and their spouses
smpl PARENT<3 --restrict

# rename the age and education variables for compatibility; compute
# the "city" dummy and finally save the reduced base dataset

rename ETA WA

rename STUDIO WE

series CIT = (ACOM4C>2)

store mroz_rep.gdt

# make a temp file holding annual hours worked per job
open SHIW/allbl.csv --cols=1,2,8,11 --quiet

series HRS = misszero(ORETOT) * 52 * misszero(MESILAV) /12
store HRS.csv NQUEST NORD HRS

# reopen the base dataset and begin drawing assorted data in
open mroz_rep.gdt

# women’s annual hours (summed across jobs)
join HRS.csv WHRS --ikey=NQUEST,NORD --data=HRS --aggr=sum
WHRS = misszero(WHRS)

# Tabor force participation
LFP = WHRS > 0

# work experience: ETALAV = age when started first job
join SHIW/lavoro.csv ETALAV --1ikey=NQUEST,NORD
series AX = misszero(WA - ETALAV)

# women’s hourly wages
join SHIW/rperl0.csv YL YM --ikey=NQUEST,NORD --aggr=sum
series WW = LFP ? (YL + YM)/WHRS : O

# family income (Y = net disposable income)
join SHIW/rfaml0.csv FAMINC --ikey=NQUEST --data=Y

# get data on children using the "count" method

join SHIW/carcoml0.csv KIDS --ikey=NQUEST --aggr=count --filter="ETA<=18"
join SHIW/carcomlO.csv KL6 --ikey=NQUEST --aggr=count --filter=ETA<6
series K618 = KIDS - KL6

# data on husbands: we first construct an auxiliary inner key for

# husbands, using the Tittle trick of subsampling the inner dataset

#

# for women who are household heads

smpl PARENT==1 --restrict --replace

join SHIW/carcomlO.csv H_ID --ikey=NQUEST --data=NORD --filter="PARENT==2"
# for women who are not household heads

smpl PARENT==2 --restrict --replace

join SHIW/carcomlO.csv H_ID --ikey=NQUEST --data=NORD --filter="PARENT==1"
smp1l full
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# add husbands’ data via the newly-added secondary inner key

join SHIW/carcomlO.csv HA --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=ETA
join SHIW/carcoml0.csv HE --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=STUDIO
join HRS.csv HHRS --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=HRS --aggr=sum
HHRS = misszero(HHRS)

# final cleanup begins

# recode educational attainment as years of education
matrix eduyrs = {0, 5, 8, 11, 13, 16, 18, 21}

series WE = replace(WE, seq(1,8), eduyrs)

series HE replace(HE, seq(l,8), eduyrs)

# cut some cruft
delete SEX STACIV KIDS YL YM PARENT H_ID ETALAV

# add some Tlabels for the series

setinfo LFP -d "1 if woman worked in 2010"

setinfo WHRS -d "Wife’s hours of work in 2010"

setinfo KL6 -d "Number of children Tess than 6 years old in household"
setinfo K618 -d "Number of children between ages 6 and 18 in household"
setinfo WA -d "Wife’s age"

setinfo WE -d "Wife’s educational attainment, in years"

setinfo WW -d "Wife’s average hourly earnings, in 2010 euros"

setinfo HHRS -d "Husband’s hours worked in 2010"

setinfo HA -d "Husband’s age"

setinfo HE -d "Husband’s educational attainment, in years"

setinfo FAMINC -d "Family income, in 2010 euros"

setinfo AX -d "Actual years of wife’s previous Tabor market experience"
setinfo CIT -d "1 if live in large city"

# save the final product
store mroz_rep.gdt
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Realtime data

8.1 Introduction

As of gretl version 1.9.13 the join command (see chapter 7) has been enhanced to deal with so-
called realtime datasets in a straightforward manner. Such datasets contain information on when
the observations in a time series were actually published by the relevant statistical agency and how
they have been revised over time. Probably the most popular sources of such data are the “Alfred”
online database at the St. Louis Fed (http://alfred.stlouisfed.org/) and the OECD’s StatEx-
tracts site, http://stats.oecd.org/. The examples in this chapter deal with files downloaded
from these sources, but should be easy to adapt to files with a slightly different format.

As already stated, join requires a column-oriented plain text file, where the columns may be sepa-
rated by commas, tabs, spaces or semicolons. Alfred and the OECD provide the option to download
realtime data in this format (tab-delimited files from Alfred, comma-delimited from the OECD). If
you have a realtime dataset in a spreadsheet file you must export it to a delimited text file before
using it with join.

Representing revision histories is more complex than just storing a standard time series, because
for each observation period you have in general more than one published value over time, along
with the information on when each of these values were valid or current. Sometimes this is repre-
sented in spreadsheets with two time axes, one for the observation period and another one for the
publication date or “vintage”. The filled cells then form an upper triangle (or a “guillotine blade”
shape, if the publication dates do not reach back far enough to complete the triangle). This format
can be useful for giving a human reader an overview of realtime data, but it is not optimal for
automatic processing; for that purpose “atomic” format is best.

8.2 Atomic format for realtime data

What we are calling atomic format is exactly the format used by Alfred if you choose the option
“Observations by Real-Time Period”, and by the OECD if you select all editions of a series for
download as plain text (CSV).! A file in this format contains one actual data-point per line, together
with associated metadata. This is illustrated in Table 8.1, where we show the first three lines from
an Alfred file and an OECD file (slightly modified).?

Consider the first data line in the Alfred file: in the observation_date column we find 1960-01-01,
indicating that the data-point on this line, namely 112.0, is an observation or measurement (in this
case, of the US index of industrial production) that refers to the period starting on January 1st
1960. The realtime_start_date value of 1960-02-16 tells us that this value was published on
February 16th 1960, and the realtime_end_date value says that this vintage remained current
through March 15th 1960. On the next day (as we can see from the following line) this data-point
was revised slightly downward to 111.0.

Daily dates in Alfred files are given in ISO extended format, YYYY-MM-DD, but below we describe
how to deal with differently formatted dates. Note that daily dates are appropriate for the last

LIf you choose to download in Excel format from OECD you get a file in the triangular or guillotine format mentioned
above.

2In the Alfred file we have used commas rather than tabs as the column delimiter; in the OECD example we have
shortened the name in the Variable column.
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Alfred: monthly US industrial production

observation_date,INDPRO, realtime_start_date,realtime_end_date
1960-01-01,112.0000,1960-02-16,1960-03-15
1960-01-01,111.0000,1960-03-16,1961-10-15

OECD: monthly UK industrial production

Country,Variable,Frequency,Time,Edition,Value,Flags
"United Kingdom","INDPRO","Monthly","Jan-1990","February 1999",100,
"United Kingdom","INDPRO","Monthly","Feb-1990","February 1999",99.3,

Table 8.1: Variant atomic formats for realtime data

two columns, which jointly record the interval over which a given data vintage was current. Daily
dates might, however, be considered overly precise for the first column, since the data period may
well be the year, quarter or month (as it is in fact here). However, following Alfred’s practice it is
acceptable to specify a daily date, indicating the first day of the period, even for non-daily data.3

Compare the first data line of the OECD example. There’s a greater amount of leading metadata,
which is left implicit in the Alfred file. Here Time is the equivalent of Alfred’s observation_date,
and Edition the equivalent of Alfred’s realtime_start_date. So we read that in February 1999
a value of 100 was current for the UK index of industrial production for January 1990, and from
the next line we see that in the same vintage month a value of 99.3 was current for industrial
production in February 1990.

Besides the different names and ordering of the columns, there are a few more substantive differ-
ences between Alfred and OECD files, most of which are irrelevant for join but some of which are
(possibly) relevant.

The first (irrelevant) difference is the ordering of the lines. It appears (though we're not sure how
consistent this is) that in Alfred files the lines are sorted by observation date first and then by
publication date—so that all revisions of a given observation are grouped together —while OECD
files are sorted first by revision date (Edi tion) and then by observation date (Time). If we want the
next revision of UK industrial production for January 1990 in the OECD file we have to scan down
several lines until we find

"United Kingdom","INDPRO","Monthly","Jan-1990","March 1999",100,

This difference is basically irrelevant because join can handle the case where the lines appear in
random order, although some operations can be coded more conveniently if we're able to assume
chronological ordering (either on the Alfred or the OECD pattern, it doesn’t matter).

The second (also irrelevant) difference is that the OECD seems to include periodic “Edition” lines
even when there is no change from the previous value (as illustrated above, where the UK industrial
production index for January 1990 is reported as 100 as of March 1999, the same value that we saw
to be current in February 1999), while Alfred reports a new value only when it differs from what
was previously current.

A third difference lies in the dating of the revisions or editions. As we have seen, Alfred gives
a specific daily date while (in the UK industrial production file at any rate), the OECD just dates
each edition to a month. This is not necessarily relevant for join, but it does raise the question of
whether the OECD might date revisions to a finer granularity in some of their files, in which case
one would have to be on the lookout for a different date format.

The final difference is that Alfred supplies an “end date” for each data vintage while the OECD

3Notice that this implies that in the Alfred example it is not clear without further information whether the observation
period is the first quarter of 1960, the month January 1960, or the day January 1st 1960. However, we assume that this
information is always available in context.
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supplies only a starting date. But there is less to this difference than meets the eye: according to
the Alfred webmaster, “by design, a new vintage must start immediately following (the day after)
the lapse of the old vintage” —so the end date conveys no independent information.*

8.3 More on time-related options

Before we get properly started it is worth saying a little more about the --tkey and --tconvert
options to join (first introduced in section 7.11), as they apply in the case of realtime data.

When you’re working with regular time series data tkey is likely to be useful while tconvert is
unlikely to be applicable (see section 7.10). On the other hand, when you’'re working with panel data
tkey is definitely not applicable but tconvert may well be helpful (section 7.12). When working
with realtime data, however, depending on the task in hand both options may be useful. You will
likely need tkey; you may well wish to select at least one column for tconvert treatment; and in
fact you may want to name a given column in both contexts—that is, include the tkey variable
among the tconvert columns.

Why might this make sense? Well, think of the --tconvert option as a “preprocessing” directive:
it asks gretl to convert date strings to numerical values (8-digit ISO basic dates) “at source”, as they
are read from the outer datafile. The --tkey option, on the other hand, singles out a column as
the one to use for matching rows with the inner dataset. So you would want to name a column in
both roles if (a) it should be used for matching periods and also (b) it is desirable to have the values
from this column in numerical form, most likely for use in filtering.

As we have seen, you can supply specific formats in connection with both tkey and tconvert (in
the latter case via the companion option --tconv-fmt) to handle the case where the date strings on
the right are not ISO-friendly at source. This raises the question of how the format specifications
work if a given column is named under both options. Here are the rules that gretl applies:

1. If a format is given with the --tkey option it always applies to the tkey column alone; and
for that column it overrides any format given via the --tconv-fmt option.

2. If a format is given via tconv-fmt it is assumed to apply to all the tconvert columns, unless
this assumption is overriden by rule 1.

8.4 Getting a certain data vintage

The most common application of realtime data is to “travel back in time” and retrieve the data that
were current as of a certain date in the past. This would enable you to replicate a forecast or other
statistical result that could have been produced at that date.

For example, suppose we are interested in a variable of monthly frequency named INDPRO, realtime
data on which is stored in an Alfred file named INDPRO. txt, and we want to check the status quo
as of June 15th 2011.

If we don’t already have a suitable dataset into which to import the INDPRO data, our first steps will
be to create an appropriately dimensioned empty dataset using the nulldata command and then
specify its time-series character via setobs, as in

nulldata 132
setobs 12 2004:01

For convenience we can put the name of our realtime file into a string variable. On Windows this
might look like

4Email received from Travis May of the Federal Reserve Bank of St. Louis, 2013-10-17. This closes off the possibility
that a given vintage could lapse or expire some time before the next vintage becomes available, hence giving rise to a
“hole” in an Alfred realtime file.
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string fname = "C:/Users/yourname/Downloads/INDPRO.txt"

We can then import the data vintage 2011-06-15 using jo1in, arbitrarily choosing the self-explanatory
identifier ip_asof_20110615.

join @fname ip_asof_20110615 --tkey=observation_date --data=INDPRO \
--tconvert="realtime_start_date" \
--filter="realtime_start_date<=20110615" --aggr=max(realtime_start_date)

Here some detailed explanations of the various options are warranted:

e The --tkey option specifies the column which should be treated as holding the observation
period identifiers to be matched against the periods in the current gretl dataset.” The more
general form of this option is --tkey="colname, format" (note the double quotes here), so
if the dates do not come in standard format, we can tell gretl how to parse them by using
the appropriate conversion specifiers as shown in Table 7.2. For example, here we could have
written --tkey="observation_date,%Y-%m-%d".

e Next, --data=INDPRO tells gretl that we want to retrieve the entries stored in the column
named INDPRO.

e As explained in section 7.11 the --tconvert option selects certain columns in the right-hand
data file for conversion from date strings to 8-digit numbers on the pattern YYYYMMDD. We’ll
need this for the next step, filtering, since the transformation to numerical values makes
it possible to perform basic arithmetic on dates. Note that since date strings in Alfred files
conform to gretl’s default assumption it is not necessary to use the --tconv-fmt option here.

e The --fiTlter option specification in combination with the subsequent --aggr aggregation
treatment is the central piece of our data retrieval; notice how we use the date constant
20110615 in ISO basic form to do numerical comparisons, and how we perform the numerical
max operation on the converted column realtime_start_date. It would also have been
possible to predefine a scalar variable, as in

vintage = 20110615

and then use vintage in the join command instead. Here we tell join that we only want to
extract those publications that (1) already appeared before (and including) June 15th 2011,
and (2) were not yet obsoleted by a newer release.5

As a result, your dataset will now contain a time series named ip_asof_20110615 with the values
that a researcher would have had available on June 15th 2011. Of course, all values for the observa-
tions after June 2011 will be missing (and probably a few before that, too), because they only have
become available later on.

8.5 Getting the n-th release for each observation period

For some purposes it may be useful to retrieve the n-th published value of each observation, where
n is a fixed positive integer, irrespective of when each of these n-th releases was published. Sup-
pose we are interested in the third release, then the relevant join command becomes:

join @fname ip_3rdpub --tkey=observation_date --data=INDPRO --aggr="seq:3"

SStrictly speaking, using --tkey is unnecessary in this example because we could just have relied on the default,
which is to use the first column in the source file for the periods. However, being explicit is often a good idea.

6By implementing the second condition through the max aggregation on the realtime_start_date column alone,
without using the realtime_end_date column, we make use of the fact that Alfred files cannot have “holes” as explained
before.
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Since we do not need the realtime_start_date information for this retrieval, we have dropped
the --tconvert option here. Note that this formulation assumes that the source file is ordered
chronologically, otherwise using the option --aggr="seq: 3", which retrieves the third value from
each sequence of matches, could have yielded a result different from the one intended. However,
this assumption holds for Alfred files and is probably rather safe in general.

The values of the variable imported as ip_3rdpub in this way were published at different dates,
so the variable is effectively a mix of different vintages. Depending on the type of variable, this
may also imply drastic jumps in the values; for example, index numbers are regularly re-based
to different base periods. This problem also carries over to inflation-adjusted economic variables,
where the base period of the price index changes over time. Mixing vintages in general also means
mixing different scales in the output, with which you would have to deal appropriately.’

8.6 Getting the values at a fixed lag after the observation period

New data releases may take place on any day of the month, and as we have seen the specific day
of each release is recorded in realtime files from Alfred. However, if you are working with, say,
monthly or quarterly data you may sometimes want to adjust the granularity of your realtime axis
to a monthly or quarterly frequency. For example, in order to analyse the data revision process for
monthly industrial production you might be interested in the extent of revisions between the data
available two and three months after each observation period.

This is a relatively complicated task and there is more than one way of accomplishing it. Either you
have to make several passes through the outer dataset or you need a sophisticated filter, written
as a hansl function. Either way you will want to make use of some of gretl’s built-in calendrical
functions.

We’ll assume that a suitably dimensioned workspace has been set up as described above. Given
that, the key ingredients of the join are a filtering function which we’ll call rel1_ok (for “release is
OK”) and the join command which calls it. Here’s the function:

function series rel_ok (series obsdate, series reldate, int p)
series y_obs, m_obs, y_rel, m_rel
# get year and month from observation date
isoconv(obsdate, &y_obs, &m_obs)
# get year and month from release date
isoconv(reldate, &y_rel, &m_rel)
# find the delta in months
series dm = (12*y_rel + m_rel) - (12*y_obs + m_obs)
# and implement the filter
return dm <= p

end function

And here’s the command:

scalar lag = 3 # choose your fixed lag here

join @fname ip_plus3 --data=INDPRO --tkey=observation_date \
--tconvert="observation_date,realtime_start_date" \
--filter="rel_ok(observation_date, realtime_start_date, lag)" \
--aggr=max(realtime_start_date)

Note that we use --tconvert to convert both the observation date and the realtime start date (or
release date) to 8-digit numerical values. Both of these series are passed to the filter, which uses the

7Some user-contributed functions may be available that address this issue, but it is beyond our scope here. Another
even more complicated issue in the realtime context is that of “benchmark revisions” applied by statistical agencies,
where the underlying definition or composition of a variable changes on some date, which goes beyond a mere rescaling.
However, this type of structural change is not, in principle, a feature of realtime data alone, but applies to any time-series
data.
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built-in function isoconv to extract year and month. We can then calculate dm, the “delta months”
since the observation date, for each release. The filter condition is that this delta should be no
greater than the specified lag, p.8

This filter condition may be satisfied by more than one release, but only the latest of those will
actually be the vintage that was current at the end of the n-th month after the observation period,
so we add the option --aggr=max(realtime_start_date). If instead you want to target the
release at the beginning of the n-th month you would have to use a slightly more complicated filter
function.

An illustration

Figure 8.1 shows four time series for the monthly index of US industrial production from October
2005 to June 2009: the value as of first publication plus the values current 3, 6 and 12 months out
from the observation date.? From visual inspection it would seem that over much of this period
the Federal reserve was fairly consistently overestimating industrial production at first release and
shortly thereafter, relative to the figure they arrived at with a lag of a year.

The script that produced this Figure is shown in full in Listing 8.1. Note that in this script we are
using a somewhat more efficient version of the rel_ok function shown above, where we pass the
required series arguments in “pointer” form to avoid having to copy them (see chapter 14).
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Figure 8.1: Successive revisions to US industrial production

8.7 Getting the revision history for an observation

For our final example we show how to retrieve the revision history for a given observation (again
using Alfred data on US industrial production). In this exercise we are switching the time axis: the
observation period is a fixed point and time is “vintage time”.

A suitable script is shown in Listing 8.2. We first select an observation to track (January 1970). We
start the clock in the following month, when a data-point for this period was first published, and let

8The filter is written on the assumption that the lag is expressed in months; on that understanding it could be used
with annual or quarterly data as well as monthly. The idea could be generalized to cover weekly or daily data without
much difficulty.

9Why not a longer series? Because if we try to extend it in either direction we immediately run into the index re-basing
problem mentioned in section 8.5, with big (staggered) leaps downward in all the series.
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Listing 8.1: Retrieving successive realtime lags of US industrial production [Download v]

function series rel_ok (series *obsdate, series *reldate, int p)
series y_obs, m_obs, d_obs, y_rel, m_rel, d_rel
isoconv(obsdate, &y_obs, &m_obs, &d_obs)
isoconv(reldate, &y_rel, &m_rel, &d_rel)
series dm = (12*y_rel + m_rel) - (12*y_obs + m_obs)
return dm < p || (dm == p && d_rel <= d_obs)

end function

nulldata 45
setobs 12 2005:10

string fname = "INDPRO.txt"

# initial published values
join @fname firstpub --data=INDPRO --tkey=observation_date \
--tconvert=realtime_start_date --aggr=min(realtime_start_date)

# plus 3 months

join @fname plus3 --data=INDPRO --tkey=observation_date \
--tconvert="observation_date,realtime_start_date" \
--filter="rel_ok(&observation_date, &realtime_start_date, 3)" \
--aggr=max(realtime_start_date)

# plus 6 months

join @fname plus6 --data=INDPRO --tkey=observation_date \
--tconvert="observation_date,realtime_start_date" \
--filter="rel_ok(&observation_date, &realtime_start_date, 6)" \
--aggr=max(realtime_start_date)

# plus 12 months

join @fname plusl2 --data=INDPRO --tkey=observation_date \
--tconvert="observation_date,realtime_start_date" \
--filter="rel_ok(&observation_date, &realtime_start_date, 12)" \
--aggr=max(realtime_start_date)

setinfo firstpub --graph-name="First publication"
setinfo plus3 --graph-name="Plus 3 months"
setinfo plus6 --graph-name="PTus 6 months"
setinfo plusl2 --graph-name="Plus 12 months"

# set --output=realtime.pdf for PDF
gnupTlot firstpub plus3 plus6 plusl2 --time --with-Tlines \
--output=display { set key left bottom; }
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it run to the end of the vintage history (in this file, March 2013). Our outer time key is the realtime
start date and we filter on observation date; we name the imported INDPRO values as ip_jan70.
Since it sometimes happens that more than one revision occurs in a given month we need to select
an aggregation method: here we choose to take the last revision in the month.

Recall from section 8.2 that Alfred records a new revision only when the data-point in question
actually changes. This means that our imported series will contain missing values for all months
when no real revision took place. However, we can apply a simple autoregressive rule to fill in the
blanks: each missing value equals the prior non-missing value.

Figure 8.2 displays the revision history. Over this sample period the periodic re-basing of the index
overshadows amendments due to accrual of new information.

Listing 8.2: Retrieving a revision history [Download V]|

# choose the observation to track here (YYYYMMDD)
scalar target = 19700101

nulldata 518 --preserve
setobs 12 1970:02

join INDPRO.txt ip_jan70 --data=INDPRO --tkey=realtime_start_date \
--tconvert=observation_date \

--filter="observation_date==target" --aggr=seq:-1

ip_jan70 = ok(ip_jan70) ? dip_jan70 : ip_jan70(-1)
gnuplot ip_jan70 --time --with-lines --output=display
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Figure 8.2: Vintages of the index of US industrial production for January 1970
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Chapter 9

Temporal disaggregation

9.1 Introduction

This chapter describes and explains the facility for temporal disaggregation in gretl.! This is im-
plemented by the td1isagg function, which supports three variants of the method of Chow and Lin
(1971); the method of Fernandez (1981); and two variants of the method of Denton (1971) as modi-
fied by Cholette (1984). Given the analytical similarities between them, the three Chow-Lin variants
and the Fernandez method will be grouped in the discussion below as “Chow-Lin methods”.

The balance of this section provides a gentle introduction to the idea of temporal disaggregation;
experts may wish to skip to the next section.

Basically, temporal disaggregation is the business of taking time-series data observed at some given
frequency (say, annually) and producing a counterpart series at a higher frequency (say, quarterly).
The term “disaggregation” indicates the inverse operation of aggregation, and to understand tem-
poral disaggregation it’s helpful first to understand temporal aggregation. In aggregating a high
frequency series to a lower frequency there are three basic methods, the appropriate method de-
pending on the nature of the data. Here are some illustrative examples.

e GDP: say we have quarterly GDP data and wish to produce an annual series. This is a flow
variable and the annual flow will be the sum of the quarterly values (unless the quarterly
values are annualized, in which case we would aggregate by taking their mean).

e Industrial Production: this takes the form of an index reporting the level of production over
some period relative to that in a base period in which the index is by construction 100. To
aggregate from (for example) monthly to quarterly we should take the average of the monthly
values. (The sum would give a nonsense result.) The same goes for price indices, and also for
ratios of stocks to flows or vice versa (inventory to sales, debt to GDP, capacity utilization).

e Money stock: this is typically reported as an end-of-period value, so in aggregating from
monthly to quarterly we’d take the value from the final month of each quarter. In case a
stock variable is reported as a start-of-period value, the aggregated version would be that of
the first month of the quarter.

A central idea in temporal disaggregation is that the high frequency series must respect both the
given low frequency data and the aggregation method. So for example, whatever numbers we come
up with for quarterly GDP, given an annual series as starting point, our numbers must sum to
the annual total. If money stock is measured at the end of the period then whatever numbers
we come up with for monthly money stock, given quarterly data, the figure for the last month of
the quarter must match that for the quarter as a whole. This is why temporal disaggregation is
sometimes called “benchmarking”: the given low frequency data constitute a benchmark which the
constructed high frequency data must match, in a well defined sense that depends on the nature
of the data.

Colloquially, we might describe temporal disaggregation as “interpolation,” but strictly speaking
interpolation applies only to stock variables. We have a known end-of-quarter value (say), which is
also the value at the end of the last month of the quarter, and we’re trying to figure out what the

IWe are grateful to Tommaso Di Fonzo, Professor of Statistical Science at the University of Padua,for detailed and
precise comments on earlier drafts. Any remaining errors are, of course, our responsibility.
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value might have been at the end of months 1 and 2. We're filling in the blanks, or interpolating.
In the GDP case, however, the procedure is distribution rather than interpolation. We have a given
annual total and we’re trying to figure out how it should be distributed over the quarters. We're
also doing distribution for variables taking the form of indices or ratios, except in this case we're
seeking plausible values whose mean equals the given low-frequency value.

While matching the low frequency benchmark is an important constraint, it obviously does not
tie down the high frequency values. That is a job for either regression-based methods such as
Chow-Lin or non-regression methods such as Denton. Details are provided in section 9.7.

9.2 Notation and design

Some notation first: the two main ingredients in temporal disaggregation are

e a T X g matrix Y (holding the series to be disaggregated) and

e amatrix X with k columns and (s - T + m) rows (to aid in the disaggregation).

The idea is that Y contains time series data sampled at some frequency f, while each column
of X contains time series data at a higher frequency, sf. So for each observation Y; we have s
corresponding rows in X. The object is to produce a transformation of Y to frequency s f, with
the help of X (whose columns are typically called “related series” or “indicators” in the temporal
disaggregation literature), via either distribution or interpolation depending on the nature of the
data. For most of this document we will assume that g = 1, or in other words we are performing
temporal disaggregation on a single low-frequency series, but tdisagg supports “batch processing”
of several series and we return to this point in section 9.9.

If the min (s - T + m) is greater than zero, that implies that there are some “extra” high-frequency
observations available for extrapolation—see section 9.4 for details.

We need to say something more about what goes into X. Under the Denton methods this must be a
single series, generally known as the “preliminary series”.? For the Chow-Lin methods, X can hold
a combination of deterministic terms (e.g. constant, trend) and stochastic series. Naturally, suitable
candidates for the role of preliminary series or indicator will be variables that are correlated with Y
(and in particular, might be expected to share short-run dynamics with Y). However, it is possible
to carry out disaggregation using deterministic terms only —in the simplest case, with X containing
nothing but a constant. Experts in the field tend to frown on this, with reason: in the absence of
any genuine high-frequency information disaggregation just amounts to a “mechanical” smoothing.
But some people may have a use for such smoothing, and it’s permitted by td1isagg.

We should draw attention to a design decision in tdisagg: we have separated the specification of
indicators in X from certain standard deterministic terms that might be wanted, namely, a constant,
linear trend or quadratic trend. If you want a disaggregation without stochastic indicators, you can
omit (or set to null) the argument corresponding to X. In that case a constant (only) will be
employed automatically, but for the Chow-Lin methods one can adjust the deterministic terms
used via an option named det, described below. In other words the content of X becomes implicit.
See section 9.6 for more detail.

Here’s an important point to note when X is given explicitly: although this matrix may contain
extra observations “at the end” we assume that Y and X are correctly aligned at the start. Take
for example the annual to quarterly case: if the first observation in annual Y is for 1980 then the
first observation in quarterly X must be for the first quarter of 1980. Ensuring this is the user’s
responsibility. We will have some more to say about this in the following section.

2There’s nothing to stop a user from constructing such a series using several primary series as input—by taking the
first principal component or some other means—but that possibility is beyond our scope here.
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9.3 Overview of data handling

The tdisagg function has three basic arguments, representing Y, X and s respectively (plus several
options; see below). The first two arguments can be given either in matrix form as such, or as
“dataset objects” —that is, a series for Y and a series or list of series for X. Or, as mentioned above,
X can be omitted (left implicit). This gives rise to five cases; which is most convenient will depend
on the user’s workflow.

1. Both Y and X are matrices. In this case, the size and periodicity of the currently open dataset
(if any) are irrelevant. If Y has T rows X must, of course, have at least s - T rows; if that
condition is not satisfied an “Invalid argument” error will be flagged.

2. Y is a series (or list) and X a matrix. In this case we assume that the periodicity of the
currently open dataset is the lower one, and T will be taken as equal to $nobs (the number of
observations in the current sample range). Again, X must have at least s - T rows.

3. Y is a matrix and X a series or list. We then assume that the periodicity of the currently open
dataset is the higher one, so that $nobs defines (s - T + m). And Y is supposed to be at the
lower frequency, so its number of rows gives T. We should then be able to find m as $nobs
minus s - T; if m < 0 an error is flagged.

4. Both Y and X are “dataset objects”. We have two sub-cases here.

(a) If Xis a series, or an ordinary list of series, the periodicity of the currently open dataset is
taken to be the higher one. The series (or list) containing Y should hold the appropriate
entries every s elements. For example, if s = 4, Y7 will be taken from the first observation,
Y, from the fifth, Y3 from the ninth, and so on. In practical terms, series of this sort are
likely to be composed by repeating each element of a low-frequency variable s times.

(b) Alternatively, X could be a “MIDAS list”. The concept of a MIDAS list is fully explained in
chapter 20 but for example, in a quarterly dataset a MIDAS list would be a list of three
series, for the third, second and first month (note the ordering). In this case, the current
periodicity is taken to be the lower one and X will contain one column, corresponding to
the high-frequency representation of the MIDAS list.

5. X is omitted. If Y is given as a matrix it is taken to have T rows. Otherwise the interpretation
is determined heuristically: if the Y series is recognized by gretl as composed of repeated
low-frequency observations, or if a series result is requested, it is taken as having length sT,
otherwise its length is taken to be T.

In the previous section we flagged the importance of correct alignment of X and Y at the start of the
data; we’re now in a position to say a little more about this. If either X or Y are given in matrix form
alignment is truly the user’s responsibility. But if they are dataset objects gretl can be more helpful.
We automatically advance the start of the sample range to exclude any leading missing values, and
retard the end of the sample ranges for X and Y to exclude trailing missing values (allowing for the
possibility that X may extend beyond Y). In addition we further advance the sample start if this is
required to ensure that the X data begin in the first high-frequency sub-period (e.g. the first quarter
of a year or the first month of a quarter). But please note: when gretl automatically excludes leading
or trailing missing values, intra-sample missing values will still provoke an error.

9.4 Extrapolation

As mentioned above, if X holds covariate data which extend beyond the range of the original series
to be disaggregated then extrapolation is supported. But this is inherently risky, and becomes
riskier the longer the horizon over which it is attempted. In tdisagg extrapolation is by default
limited to one low-frequency period (= s high-frequency periods) beyond the end of the original
data. The user can adjust this behavior via the extmax member of the opts bundle passed to
tdisagg, described in the next section.
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9.5 Function signature

The signature of tdisagg is:
matrix tdisagg(Y0, [X], int s, [bundle opts], [bundle results])

where square brackets indicate optional arguments. Note that while the return value is a matrix, if
YO contains a single column or series it can be assigned to a series as in

series ys = tdisagg(Y0, ...)

provided it’s of the right length to match the current dataset, or the current sample range. Details
on the arguments follow.

YO :Y, as a matrix, series or list.

X (optional): X as a matrix, series or list. This should not contain standard deterministic terms,
since they are handled separately (see det under opts below). If this matrix is omitted, then
disaggregation will be performed using deterministic terms only.

s (int): The temporal expansion factor, for example 3 for quarterly to monthly, 4 for annual to
quarterly or 12 for annual to monthly. We do not support cases such as monthly to weekly or
monthly to daily, where s is not a fixed integer value common to all observations; otherwise,
anything goes.

opts (bundle, optional): a bundle holding additional options. The recognized keys are (in alpha-
betical order):

aggtype (string): Specifies the type of temporal aggregation appropriate to the series in ques-
tion. The value must be one of sum (each low-frequency value is a sum of s high-frequency
values, the default); avg (each low-frequency value is the average of s high frequency val-
ues); or last or first, indicating respectively that each low-frequency value is the last
or first of s high frequency values.

det (int): Relevant only when one of the Chow-Lin methods is selected. This is a numeric
code for the deterministic terms to be included in the regressions: 0 means none; 1,
constant only; 2, constant and linear trend; 3, constant and quadratic trend. The default
is 1.

extmax (int): the maximum number of high-frequency periods over which extrapolation should
be carried out, conditional on the availability of covariate data. A zero value means no
extrapolation; a value of —1 means as many periods as possible; and a positive value
limits extrapolation to the specified number of periods. See section 9.4 for a statement
of the default value.

method (string): Selects the method of disaggregation (see the listing below). Note that the
Chow-Lin methods employ an autoregression coefficient, p, which captures the persis-
tence of the target series at the higher frequency and is used in GLS estimation of the
parameters linking X to Y.

e chow-11in (the default) is modeled on the original method proposed by Chow and
Lin. It uses a value of p computed as the transformation of a maximume-likelihood
estimate of the low-frequency autocorrelation coefficient.

e chow-Tin-mle is equivalent to the method called chow-11in-maxTog in the tempdis-
agg package for R; p is estimated by iterated GLS using the loglikelihood as criterion,
as recommended by Bournay and Laroque (1979). (The BFGS algorithm is used inter-
nally).

e chow-Tin-ssris equivalent to the method called chow-Tin-minrss-quilis in tem-
pdisagg; p is estimated by iterated GLS using the sum of squared GLS residuals as
criterion (L-BFGS is used internally).



Chapter 9. Temporal disaggregation 77

e fernandez is basically “Chow-Lin with p = 1”. It is suitable if the target series has a
unit root, and is not cointegrated with the indicator series.

e denton-pfd is the proportional first differences variant of Denton, as modified by
Cholette. See Di Fonzo and Marini (2012) for details.

e denton-afd is the additive first differences variant of Denton (again, as modified by
Cholette). In contrast to the Chow-Lin methods, neither Denton procedure involves
regression.

plot (int): If a non-zero value is given, a simple plot is displayed by way of a “sanity check”
on the final series. See section 9.8 for details.

rho (scalar): Relevant only when one of the Chow-Lin methods is selected. If the method
is chow-11in, then rho is treated as a fixed value for p, thus enabling the user to by-
pass the default estimation procedure altogether. If the method is chow-Tin-mle or
chow-1in-ssr, on the other hand, the supplied p value is used to initialize the numeri-
cal optimization algorithm.

verbose (int): Controls the verbosity of Chow-Lin or Fernandez output. If O (the default)
nothing is printed unless an error occurs; if 1, summary output from the relevant regres-
sion is shown; if 2, in addition output from the optimizer for the iterated GLS procedure
is shown, if applicable.

results (bundle, optional): If present, this argument must be a previously defined bundle. Upon
successful completion of any of the methods other than denton it contains details of the
disaggregation under the following keys:
method : the method employed
rho : the value of p used
Tn1 : loglikelihood (maximized by the chow-T1in-mle method)
SSR : sum of squared residuals (minimized by the chow-Tin-ssr method)
coeff : the GLS (or OLS) coefficients
stderr : standard errors for the coefficients
If p is set to zero—either by specification of the user or because the estimate p turned out
to be non-positive—then estimation of the coefficients is via OLS. In that case the Tn1 and

SSR values are calculated using the OLS residuals (which will be on a different scale from the
weighted residuals in GLS).

9.6 Handling of deterministic terms

It may be helpful to set out clearly, in one place, how deterministic terms are handled by tdisagg.

e If X is given explicitly: No deterministic term is added when the Denton method is used (since
a single preliminary series is wanted) but a constant is added when one of the Chow-Lin
methods is selected. The latter default can be overridden (i.e. the constant removed, or a
trend added) by means of the det entry in the options bundle.

o If X is omitted: By default a constant is used for all methods. Again, for Chow-Lin this can be
overridden by specifying a det value. If for some reason you wanted Denton with just a trend
you would have to supply X containing a trend.

9.7 Some technical details

In this section we provide some technical details on the methods used by tdisagg. We will refer to
the version of Y converted to the high frequency s f as the “final series”.
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As regards the Cholette-modified Denton methods, for the proportional first difference variant we
calculate the final series using the solution described by Di Fonzo and Marini (2012), specifically
equation (4) on page 5, and for the additive variant we draw on Di Fonzo (2003), pages 3 and 5 in
particular. Note that these procedures require the construction and inversion of a matrix of order
(s+1)T. If both s and T are large it can therefore take some time, and be quite demanding of RAM.

As regards Chow-Lin, let pg indicate the rho value passed via the options bundle (if applicable). We
then take these steps:

1.

If po > 0 set p = pp and go to step 6 if the method is chow-T1in or step 7 otherwise. But if
po < 0 set pg = 0.

. Estimate via OLS a regression of Y on CX,3 where C is the appropriate aggregation matrix. Let

Bors equal the coefficients from this regression. If pp = 0 and the method is chow-11in go to
step 8.

Calculate the (low frequency) first order autocorrelation of the OLS residuals, p;. If p; = 1076
go to step 4. Otherwise, if the method is chow-Tin set p = 0 and go to step 8, else set p = 0.5
and go to step 7.

Refine the positive estimate of p; via Maximum Likelihood estimation of the AR(1) specifica-
tion as described in Davidson and MacKinnon (2004).

If p; < 0.999, set p to the high-frequency counterpart of p; using the approach given in Chow
and Lin (1971). Otherwise set p = 0.999. If the method is chow-11in, go to step 6, otherwise
go to step 7.

Perform GLS with the given value of p, store the coefficients as BGLS and go to step 9.

Perform iterated GLS starting from the prior value of p, adjusting p with the goal of either
maximizing the loglikelihood (method chow-1in-mle) or minimizing the sum of squared GLS
residuals (chow-Tin-ssr); set Bgrs to the final coefficient estimates; and go to step 9.

Calculate the final series as XBOLS + C'(CC’) Yiors, where 7igrs indicates the OLS residuals,
and stop.

Calculate the final series as XBGLS + VC' (CVC’)icLs, where figrs indicates the GLS residuals
and V is the estimated high-frequency covariance matrix.

A few notes on our Chow-Lin algorithm follow.

¢ One might question the value of performing steps 2 to 5 when the method is one that calls

for GLS iteration (chow-1in-mle or chow-11in-ssr), but our testing indicates that it can be
helpful to have a reasonably good estimate of p in hand before embarking on these iterations.

Conversely, one might wonder why we bother with GLS iterations if we find p; < 1075. But
this allows for the possibility (most likely associated with small sample size) that iteration
will lead to p > 0 even when the estimate based on the intial OLS residuals is zero or negative.

Note that in all cases we are discarding an estimate of p < 0 (truncating to 0), which we take
to be standard in this field. In our iterated GLS we achieve this by having the optimizer pick
values x in [—oo, +o0] which are translated to [0, 1] via the logistic CDF, p = 1/(1 + exp(—x)).
To be precise, that’s the case with chow-Tin-m1e. But we find that the chow-Tin-ssr method
is liable to overestimate p and proceed to values arbitrarily close to 1, resulting in numerical
problems. We therefore bound this method to x in [-20, +6.9], corresponding to p values
between near-zero and approximately 0.999.4

3Strictly speaking, CX uses only the first sT rows of X if m > 0.
41t may be worth noting that the tempdisagg package for R limits both methods to a maximum p of 0.999. We find,
however, that the ML method can “look after itself”, and does not require the fixed upper bound short of 1.0.
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Temporal disaggregation (chow-lin)
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Figure 9.1: Example output from plot option, showing annual GNP (red) and quarterly final series (blue) using
quarterly industrial production as indicator.

As for the Fernandez method, this is quite straightforward. The place of the high-frequency co-
variance matrix V in Chow-Lin is taken by (D’'D)~!, where D is the approximate first-differencing
matrix, with 1 on the diagonal and —1 on the first sub-diagonal. For efficient computation, however,
we store neither D nor D’'D as such, and do not perform any explicit inversion. The special struc-
ture of (D’'D)~! makes it possible to produce the effect of pre-multiplication by this matrix with
O(T?) floating-point operations. Estimation of p is not an issue since it equals 1 by assumption.

9.8 The plot option

The semantics of this option may be enriched in future but for now it’s a simple boolean switch. The
effect is to produce a time series plot of the final series along with the original low-frequency series,
shown in “step” form. If aggregation is by sum the final series is multiplied by s for comparability
with the original. If the disaggregation has been successful these two series should track closely
together, with the final series showing plausible short-run dynamics. An example is shown in
Figure 9.1.

If there are many observations, the two lines may appear virtually coincident. In that case one
can see what’s going on in more detail by exploiting the “Zoom” functionality of the plot, which is
accessed via the right-click menu in the plot window.

9.9 Multiple low-frequency series

We now return to a point mentioned in section 9.2, namely, that Y may be given as a T X g matrix
with g > 1, or a list of g series. This means that a single call to tdisagg can be used to process
several input series (“batch processing”), in which case the return value is a matrix with (s - T + m)
rows and g columns.

There are some restrictions. First and most obviously, a single call to tdisagg implies a single
selection of “indicators” or “related series” (X) and a single selection of options (aggregation type
of the data, deterministic terms, disaggregation method, and so on). So this possibility will be
relevant only if you have several series that “want the same treatment.” In addition, if g > 1 the
plot and verbose options are ignored and the results bundle is not filled; if you need those
features you should supply a single series or vector in Y.
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The advantage of batch processing lies in the spreading of fixed computational cost, leading to
shorter execution time. However, the relative importance of the fixed cost differs substantially
according to the disaggregation method. For the Chow-Lin methods the fixed cost is relatively
small and so little speed-up can be expected, but for the Denton methods it dominates, and (in our
testing) you can process g > 1 series in little more time than it takes to process a single series.

As they say, “Your mileage may vary,” but if you have a large number of series to be disaggregated
via one of the Denton methods you may well find it much faster to use the batch facility of tdisagg.

9.10 Examples

Listing 9.1 shows an example of usage and its output. The data are drawn from the St Louis
Fed; we disaggregate quarterly GDP to monthly with the help of industrial production and payroll
employment, using the default Chow-Lin method.

Several other example scripts are available from http://gretl.sourceforge.net/tdisagg/.

Listing 9.1: Example of tdisagg usage [Download v]
Input:

### Traditional Chow-Lin: y is a series with repetition

### and X is a Tist of series. This corresponds to case 4(a)
### as described in section 9.3 of the documentation above.
##t#

# ensure that no data are in place

clear

# open gretl’s St Louis Fed database

open fedstl.bin

# import two monthly series

data indpro payems

# import quarterly GDP (values are repeated)
data gdpcl

# restrict sample to complete data
smpl --no-missing

# disaggregate GDP from quarterly to monthly, using

# industrial production and payroll employment as indicators
scalar s = 3

Tist X = indpro payems

series gdpm = tdisagg(gdpcl, X, s, _(verbose=1, aggtype="sum"))

Output:

Aggregation type sum
GLS estimates (chow-1in) T = 294
Dependent variable: gdpcl

coefficient std. error t-ratio p-value
const 312.394 263.372 1.186 0.2365
indpro 10.9158 1.75785 6.210 1.83e-09 ***

payems 0.0242860 0.00171935 14.13 7.39e-35 ¥**
rho = 0.999, SSR = 51543.9, Tnl = -1604.98

Generated series gdpm (ID 4)


http://gretl.sourceforge.net/tdisagg/
http://gretl.sourceforge.net/guidefiles/example-09.1.inp

Chapter 10

Special functions in genr

10.1 Introduction

The genr command provides a flexible means of defining new variables. At the same time, the
somewhat paradoxical situation is that the “genr” keyword is almost never visible in gretl scripts.
For example, it is not really recommended to write a line such as genr b = 2.5, because there are
the following alternatives:

e scalar b = 2.5, which also invokes the genr apparatus in gretl, but provides explicit type
information about the variable b, which is usually preferable. (gretl’s language hansl is stati-
cally typed, so b cannot switch from scalar to string or matrix, for example.)

e b = 2.5, leaving it to gretl to infer the admissible or most “natural” type for the new object,
which would again be a scalar in this case.

e matrix b = {2.5}: This formulation is required if b is going to be expanded with additional
rows or columns later on. Otherwise, gretl’s static typing would not allow b to be promoted
from scalar to matrix, so it must be a matrix right from the start, even if it is of dimension
1 x 1 initially. (This definition could also be written as matrix b = 2.5, but the more explicit
form is recommended.)

In addition to scalar or matrix, other type keywords that can be used to substitute the generic
genr term are those enumerated in the following chapter 11. In the case of an array the concrete
specification should be used, so one of matrices, strings, 1ists, bundles.!

Therefore, there’s only a handful of special cases where it is really necessary to use the “genr”
keyword:

e genr time — Creates a time trend variable (1,2,3,...) under the name time. Note that within
an appropriately defined panel dataset this variable honors the panel structure and is a true
time index. (In a cross-sectional dataset, the command will still work and produces the same
result as genr index below, but of course no temporal meaning exists.)

e genr index — Creates an observation variable named index, running from 1 to the sample
size.

e genr unitdum — In the context of panel data, creates a set of dummies for the panel groups
or “units”. These are named du_1, du_2, and so forth. Actually, this particular genr usage is
not strictly necessary, because a list of group dummies can also be obtained as:

series gr = $unit
Tist groupdums = dummify(gr, NA)

(The NA argument to the dummify function has the effect of not skipping any unit as the
reference group, thus producing the full set of dummies.)

LA recently added advanced datatype is an array of arrays, with the associated type specifier arrays.
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e genr timedum — Again for panel data, creates a set of dummies for the time periods, named
dt_1, dt_2, .... And again, a list-producing variant without genr exists, using the special
accessor $obsminor which indexes time in the panel context and can be used as a substitute
for time from above:

series tindex = $obsminor
Tist timedums dummify(tindex, NA)

Finally, there also exists genr dummy, which produces a set of seasonal dummies. However, it is
recommended to use the seasonals () function instead, which can also return centered dummies.

The rest of this chapter discusses other special function aspects.

10.2 Cumulative densities and p-values

The two functions cdf and pvalue provide complementary means of examining values from 17
probability distributions (as of July 2021), among which the most important ones: standard normal,
Student’s t, x2, F, gamma, and binomial. The syntax of these functions is set out in the Gretl
Command Reference; here we expand on some subtleties.

The cumulative density function or CDF for a random variable is the integral of the variable’s
density from its lower limit (typically either —co or 0) to any specified value x. The p-value (at
least the one-tailed, right-hand p-value as returned by the pvalue function) is the complementary
probability, the integral from x to the upper limit of the distribution, typically + .

In principle, therefore, there is no need for two distinct functions: given a CDF value p( you could
easily find the corresponding p-value as 1 — pg (or vice versa). In practice, with finite-precision com-
puter arithmetic, the two functions are not redundant. This requires a little explanation. In gretl,
as in most statistical programs, floating point numbers are represented as “doubles” — double-
precision values that typically have a storage size of eight bytes or 64 bits. Since there are only so
many bits available, only so many floating-point numbers can be represented: doubles do not model
the real line. Typically doubles can represent numbers over the range (roughly) +1.7977 x 1038,
but only to about 15 digits of precision.

Suppose you're interested in the left tail of the x? distribution with 50 degrees of freedom: you’d
like to know the CDF value for x = 0.9. Take a look at the following interactive session:

? scalar pl = cdf(X, 50, 0.9)
Generated scalar pl = 8.94977e-35
? scalar p2 = pvalue(X, 50, 0.9)
Generated scalar p2 = 1

? scalar test =1 - p2

Generated scalar test = 0

The cdf function has produced an accurate value, but the pvalue function gives an answer of 1,
from which it is not possible to retrieve the answer to the CDF question. This may seem surprising
at first, but consider: if the value of p1 above is correct, then the correct value for p2 is 1-8.94977 x
1073, But there’s no way that value can be represented as a double: that would require over 30
digits of precision.

Of course this is an extreme example. If the x in question is not too far off into one or other tail
of the distribution, the cdf and pvalue functions will in fact produce complementary answers, as
shown below:

? scalar pl = cdf(X, 50, 30)

Generated scalar pl = 0.0111648
? scalar p2 = pvalue(X, 50, 30)
Generated scalar p2 = 0.988835
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? scalar test =1 - p2
Generated scalar test = 0.0111648

But the moral is that if you want to examine extreme values you should be careful in selecting the
function you need, in the knowledge that values very close to zero can be represented as doubles
while values very close to 1 cannot.

10.3 Retrieving internal variables (dollar accessors)

A very useful feature is to retrieve in a script various values calculated by gretl in the course of
estimating models or testing hypotheses. Since they all start with a literal $ character, they are
called “dollar accessors”. The variables that can be retrieved in this way are listed in the Gretl
Command Referenceor in the built-in function help under the Help menu. The dollar accessors
can be used like other gretl objects in script assignments or statements. Some of those accessors
are actually independent of any estimation or test and describe, for example, the context of the
running gretl program. But here we say a bit more about the special variables $test and $pvalue.

These variables hold, respectively, the value of the last test statistic calculated using an explicit
testing command and the p-value for that test statistic. If no such test has been performed at the
time when these variables are referenced, they will produce the missing value code. Some “explicit
testing commands” that work in this way are as follows (among others): add (joint test for the sig-
nificance of variables added to a model); adf (Augmented Dickey-Fuller test, see below); arch (test
for ARCH); chow (Chow test for a structural break); coeffsum (test for the sum of specified coef-
ficients); coint (Engle-Granger cointegration test); cusum (the Harvey-Collier t-statistic); difftest
(test for a difference of two groups); kpss (KPSS stationarity test, no p-value available); modtest
(see below); meantest (test for difference of means); omit (joint test for the significance of vari-
ables omitted from a model); reset (Ramsey’s RESET); restrict (general linear restriction); runs
(runs test for randomness); and vartest (test for difference of variances). In most cases both a
$test and a $pvalue are stored; the exception is the KPSS test, for which a p-value is not currently
available.

The modtest command (which must follow an estimation command) offers several diagnostic tests;
the particular test performed depends on the option flag provided. Please see the Gretl Command
Reference and for example chapters 32 and 31 of this Guide for details.

An important point to notice about this mechanism is that the internal variables $test and $pvalue
are over-written each time one of the tests listed above is performed. If you want to reference these
values, you must do so at the correct point in the sequence of gretl commands.



Chapter 11

Gretl data types

11.1 Introduction

Gretl offers the following data types:

scalar holds a single numerical value
series holds n numerical values, where n is the number of observations in the current

dataset
matrix holds a rectangular array of numerical values, of any (two) dimensions
Tist holds the ID numbers of a set of series

string holds an array of characters
bundle holds zero or more objects of various types
array  holds zero or more objects of a given type

The “numerical values” mentioned above are all double-precision floating point numbers.

In this chapter we give a run-down of the basic characteristics of each of these types and also
explain their “life cycle” (creation, modification and destruction). The list and matrix types, whose
uses are relatively complex, are discussed at greater length in chapters 15 and 17 respectively.

11.2 Series

We begin with the series type, which is the oldest and in a sense the most basic type in gretl. When
you open a data file in the gretl GUI, what you see in the main window are the ID numbers, names
(and descriptions, if available) of the series read from the file. All the series existing at any point in
a gretl session are of the same length, although some may have missing values. The variables that
can be added via the items under the Add menu in the main window (logs, squares and so on) are
also series.

For a gretl session to contain any series, a common series length must be established. This is
usually achieved by opening a data file, or importing a series from a database, in which case the
length is set by the first import. But one can also use the nulldata command, which takes as it
single argument the desired length, a positive integer.

Each series has these basic attributes: an ID number, a name, and of course n numerical values.
A series may also have a description (which is shown in the main window and is also accessible
via the Tabels command), a “display name” for use in graphs, a record of the compaction method
used in reducing the variable’s frequency (for time-series data only) and flags marking the variable
as discrete and/or as a numeric encoding of a qualitative characteristic. These attributes can be
edited in the GUI by choosing Edit Attributes (either under the Variable menu or via right-click), or
by means of the setinfo command.

In the context of most commands you are able to reference series by name or by ID number as you
wish. The main exception is the definition or modification of variables via a formula; here you must
use names since ID numbers would get confused with numerical constants.

Note that series ID numbers are always consecutive, and the ID number for a given series will change
if you delete a lower-numbered series. In some contexts, where gretl is liable to get confused by
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such changes, deletion of low-numbered series is disallowed.

Discrete series

It is possible to mark variables of the series type as discrete. The meaning and uses of this facility
are explained in chapter 12.

String-valued series

It is generally expected that series in gretl will be “properly numeric” (on a ratio or at least an
ordinal scale), or the sort of numerical indicator variables (0/1 “dummies”) that are traditional
in econometrics. However, there is some support for “string-valued” series—see chapter 16 for
details.

11.3 Scalars

The scalar type is relatively simple: just a convenient named holder for a single numerical value.
Scalars have none of the additional attributes pertaining to series, do not have ID numbers, and
must be referenced by name. A common use of scalar variables is to record information made
available by gretl commands for further processing, as in scalar s2 = $sigma”2 to record the
square of the standard error of the regression following an estimation command such as ols.

You can define and work with scalars in gretl without having any dataset in place.

In the gretl GUI, scalar variables can be inspected and their values edited via the “Icon view” (see
the View menu in the main window).

11.4 Matrices

Matrices in gretl work much as in other mathematical software (e.g. MATLAB, Octave). Like scalars
they have no ID numbers and must be referenced by name, and they can be used without any
dataset in place. Matrix indexing is 1-based: the top-left element of matrix A is A[1,1]. Matrices
are discussed at length in chapter 17; advanced users of gretl will want to study this chapter in
detail.

Matrices have two optional attribute beyond their numerical content: they may have column and/or
row names attached; these are displayed when the matrix is printed. See the cnameset and
rnameset functions for details.

In the gretl GUI, matrices can be inspected, analysed and edited via the Icon view item under the
View menu in the main window: each currently defined matrix is represented by an icon.

11.5 Lists

As with matrices, lists merit an explication of their own (see chapter 15). Briefly, named lists can
(and should!) be used to make command scripts less verbose and repetitious, and more easily
modifiable. Since lists are in fact lists of series ID numbers they can be used only when a dataset is
in place.

In the gretl GUI, named lists can be inspected and edited under the Data menu in the main window,
via the item Define or edit list.

11.6 Strings

String variables may be used for labeling, or for constructing commands. They are discussed in
chapter 15. They must be referenced by name; they can be defined in the absence of a dataset.
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Such variables can be created and modified via the command-line in the gretl console or via script;
there is no means of editing them via the gretl GUI.

11.7 Bundles

A bundle is a container or wrapper for various sorts of objects—primarily scalars, matrices,
strings, arrays and bundles. (Yes, a bundle can contain other bundles). Secondarily, series and
lists can be placed in bundles but this is subject to important qualifications noted below.

A bundle takes the form of a hash table or associative array: each item placed in the bundle is
associated with a key which can used to retrieve it subsequently. We begin by explaining the
mechanics of bundles then offer some thoughts on what they are good for.

There are three ways of creating a bundle:

e Just “declare” it, as in
bundle foo

e or define an empty bundle using the nul1 keyword:
bundle foo = null

e or use the defbundle function, which allows you to populate a new bundle (or revise an
existing one), as in

"

bundle foo = defbundle("x", 13, "mat", I(3), "str", "some string™)

The first two formulations are basically equivalent, in that they both create an empty bundle. The
difference is that the second variant may be reused —if a bundle named foo already exists the
effect is to empty it—while the first may only be used once in a given gretl session; it is an error
to attempt to declare a variable that already exists. For details on the defbundle function, see the
Gretl Command Reference or the Function Reference under Help in the GUI program.

To add an object to a bundle you assign to a compound left-hand value: the name of the bundle

followed by the key. Two forms of syntax are acceptable in this context. The recommended syntax

(for most uses) is bundlename.key; that is, the name of the bundle followed by a dot, then the key.

Both the bundle name and the key must be valid gretl identifiers.! For example, the statement
foo.matrixl = m

adds an object called m (presumably a matrix) to bundle foo under the key matrix1. If you wish to
make it explicit that m is supposed to be a matrix you can use the form

matrix foo.matrixl = m
Alternatively, a bundle key may be given as a string enclosed in square brackets, as in
foo["matrix1"] =m
This syntax offers greater flexibility in that the key string does not have to be a valid identifier (for
example it can include spaces). In addition, when using the square bracket syntax it is possible to

use a string variable to define or access the key in question. For example:

string s = "matrix 1"
foo[s] = m # matrix is added under key "matrix 1"

1 As a reminder: 31 characters maximum, starting with a letter and composed of just letters, numbers or underscore.
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To get an item out of a bundle, again use the name of the bundle followed by the key, as in

matrix bm = foo.matrixl

# or using the alternative notation
matrix bm = foo["matrixl1l"]

# or using a string variable

matrix bm = foo[s]

Note that the key identifying an object within a given bundle is necessarily unique. If you reuse an
existing key in a new assignment, the effect is to replace the object which was previously stored
under the given key. It is not required that the type of the replacement object is the same as that
of the original.

Also note that when you add an object to a bundle, what in fact happens is that the bundle acquires
a copy of the object. The external object retains its own identity and is unaffected if the bundled
object is replaced by another. Consider the following script fragment:

bundle foo
matrix m = I(3)
foo.mykey = m
scalar x = 20
foo.mykey = x

After the above commands are completed bundle foo does not contain a matrix under mykey, but
the original matrix m is still in good health.

To delete an object from a bundle use the delete command, with the bundle/key combination, as
in

delete foo.mykey

This destroys the object associated with mykey and removes the key from the hash table.

To determine whether a bundle contains an object associated with a given key, use the inbundle()
function. This takes two arguments: the name of the bundle and the key string. The value returned
by this function is an integer which codes for the type of the object (0 for no match, 1 for scalar, 2
for series, 3 for matrix, 4 for string, 5 for bundle and 6 for array). The function typestr() may be
used to get the string corresponding to this code. For example:

scalar type = inbundle(foo, x)

if type ==

print "x: no such object"
else

printf "x is of type %s\n", typestr(type)
endif

Besides adding, accessing, replacing and deleting individual items, the other operations that are
supported for bundles are union, printing and deletion. As regards union, if bundles b1 and b2 are
defined you can say

bundle b3 = bl + b2

to create a new bundle that is the union of the two others. The algorithm is: create a new bundle
that is a copy of b1, then add any items from b2 whose keys are not already present in the new
bundle. (This means that bundle union is not commutative if the bundles have one or more key
strings in common.)

If b is a bundle and you say print b, you get a listing of the bundle’s keys along with the types of
the corresponding objects, as in
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? print b
bundle b:

x (scalar)

mat (matrix)
inside (bundle)

Note that in the example above the bundle b nests a bundle named inside. If you want to see
what’s inside nested bundles (with a single command) you can append the --tree option to the
print command.

Series and lists as bundle members

It is possible to add both series and lists to a bundle, as in

open data4-10

Tist X = const CATHOL INCOME
bundle b

b.y = ENROLL

b.X = X

eval b.y

eval b.X

However, it is important to bear in mind the following limitations.

e A series, as such, is inherently a member of a dataset, and a bundle can “survive” the replace-
ment or destruction of the dataset from which a series was added. It may then be impossible
(or, even if possible, meaningless) to extract a bundled series as a series. However it’s always
possible to retrieve the values of the series in the form of a matrix (column vector).

e In gretl commands that call for series arguments you cannot give a bundled series without
first extracting it. In the little example above the series ENROLL was added to bundle b under
the key y, but b.y is not itself a series (member of a dataset), it’s just an anonymous array
of values. It therefore cannot be given as, say, the dependent variable in a call to gretl’s ols
command.

e A gretl list is just an array of ID numbers of series in a given dataset, a “macro” if you like.
So as with series, there’s no guarantee that a bundled list can be extracted as a list (though it
can always be extracted as a row vector).

The points made above are illustrated in Listing 11.1. In “Case 1” we open a little dataset with just
14 cross-sectional observations and put a series into a bundle. We then open a time-series dataset
with 64 observations, while preserving the bundle, and extract the bundled series. This instance is
legal, since the stored series does not overflow the length of the new dataset (it gets written into
the first 14 observations), but it’s probably not meaningful. It’s up to the user to decide if such
operations make sense.

In “Case 2” a similar sequence of statements leads to an error (trapped by catch) because this time
the stored series will not fit into the new dataset. We can nonetheless grab the data as a vector.

In “Case 3” we put a list of three series into a bundle. This does not put any actual data values into
the bundle, just the ID numbers of the specified series, which happen to be 4, 5 and 6. We then
switch to a dataset that contains just 4 series, so the list cannot be extracted as such (IDs 5 and 6
are out of bounds). Once again, however, we can retrieve the ID numbers in matrix form if we want.

In some cases putting a gretl list as such into a bundle may be appropriate, but in others you are
better off adding the content of the list, in matrix form, as in

open data4-10
Tist X = const CATHOL INCOME
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bundle b
matrix b.X = {X}

In this case we're adding a matrix with three columns and as many rows as there are in the dataset;
we have the actual data, not just a reference to the data that might “go bad”. See chapter 17 for
more on this.

Listing 11.1: Series and lists in bundles [Download v]

# Case 1: store and retrieve series, 0OK?
open data4-1

bundle b

series b.x = sqft

open data9-7 --preserve

series x = b.x

print x --byobs

# Case 2: store and retrieve series: gives an error,
# but the data can be retrieved in matrix form
open data9-7
bundle b
series b.x = QNC
open data4-1 --preserve
catch series x = b.x # wrong, won’t fit!
if S$error
matrix mx = b.x
print mx
else
print x
endif

# Case 3: store and retrieve list: gives an error,
# but the ID numbers in the 1list can be retrieved
# as a row vector
open data9-7
1ist L = PRIME UNEMP STOCK
bundle b
Tist b.L = L
open data4-1 --preserve
catch 1ist L = b.L
if S$error
matrix mL = b.L
print mL # prints "4 5 6"
endif

What are bundles good for?

Bundles are unlikely to be of interest in the context of standalone gretl scripts, but they can be
very useful in the context of complex function packages where a good deal of information has to
be passed around between the component functions (see Cottrell and Lucchetti, 2016). Instead of
using a lengthy list of individual arguments, function A can bundle up the required data and pass
it to functions B and C, where relevant information can be extracted via a mnemonic key.

In this context bundles should be passed in “pointer” form (see chapter 14) as illustrated in the fol-
lowing trivial example, where a bundle is created at one level then filled out by a separate function.


http://gretl.sourceforge.net/guidefiles/example-11.1.inp
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# modification of bundle (pointer) by user function

function void fill_out_bundle (bundle *b)
b.mat = I(3)
b.str = "foo"
b.x = 32

end function

bundle my_bundle
fi11_out_bundle(&my_bundle)

The bundle type can also be used to advantage as the return value from a packaged function, in
cases where a package writer wants to give the user the option of accessing various results. In
the gretl GUI, function packages that return a bundle are treated specially: the output window that
displays the printed results acquires a menu showing the bundled items (their names and types),
from which the user can save items of interest. For example, a function package that estimates a
model might return a bundle containing a vector of parameter estimates, a residual series and a
covariance matrix for the parameter estimates, among other possibilities.

As a refinement to support the use of bundles as a function return type, the setnote function can
be used to add a brief explanatory note to a bundled item—such notes will then be shown in the
GUI menu. This function takes three arguments: the name of a bundle, a key string, and the note.
For example

setnote(b, "vcv'", "covariance matrix'")

After this, the object under the key vcv in bundle b will be shown as “covariance matrix” in a GUI
menu.

11.8 Arrays

The gretl array type is intended for scripting use. Arrays have no GUI representation and they're
unlikely to acquire one.2

A gretl array is, as you might expect, a container which can hold zero or more objects of a certain
type, indexed by consecutive integers starting at 1. It is one-dimensional. This type is implemented
by a quite “generic” back-end. The types of object that can be put into arrays are strings, matrices,
lists, bundles and arrays.3

Of gretl’s “primary” types, then, neither scalars nor series are supported by the array mechanism.
There would be little point in supporting arrays of scalars as such since the matrix type already
plays that role, and more flexibly. As for series, they have a special status as elements of a dataset
(which is in a sense an “array of series” already) and in addition we have the list type which already
functions as a sort of array for subsets of the series in a dataset.

Creating an array

An array can be brought into existence in any of four ways: bare declaration, assignment from nulT,
or using one of the functions array() or defarray(). In each case one of the specific type-words
strings, matrices, lists, bundles or arrays must be used. Here are some examples:

# declare an empty array of strings
strings S

2However, it's possible to save arrays “invisibly” in the context of a GUI session, by virtue of the fact that they can be
packed into bundles (see below), and bundles can be saved as part of a “session”.
31t was not possible to nest arrays prior to version 2019d of gretl.
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# make an empty array of matrices

matrices M = null

# make an array with space for four bundles
bundles B = array(4)

# make an array with three specified strings
strings P = defarray("foo", "bar", "baz")

The “bare declaration” form and the “= nul1” form have the same effect of creating an empty array,
but the second can be used in contexts where bare declaration is not allowed (and it can also be
used to destroy the content of an existing array and reduce it to size zero). The array() function
expects a positive integer argument and can be used to create an array of pre-given size; in this
case the elements are initialized appropriately as empty strings, null matrices, empty lists, empty
bundles or empty arrays. The defarray() function takes a variable number of arguments (one or
more), each of which may be the name of a variable of the appropriate type or an expression which
evaluates to an object of the appropriate type.

Setting and getting elements

There are two ways to set the value of an array element: you can set a particular element using the
array index, or you can append an element using the += operator:

# first case

strings S = array(3)

S[2] = "string the second"
# alternative

matrices M = null

M += mnormal(T,k)

In the first method the index must (of course) be within bounds; that is, greater than zero and
no greater than the current length of the array. When the second method is used it automatically
extends the length of the array by 1.

To get hold of an element, the array index must be used:

# for S an array of strings
string s = S[5]

# for M an array of matrices
printf "\n%#12.5g\n", M[1]

Operations on whole arrays

Three operators are applicable to whole arrays, but only one to arrays of arbitrary type (the other
two being restricted to arrays of strings). The generally available operation is appending. You can
do, for example

# for M1 and M2 both arrays of matrices
matrices BigM = M1 + M2

# or if you wish to augment M1

M1 += M2

In each case the result is an array of matrices whose length is the sum of the lengths of M1 and
M2 —and similarly for the other supported types.

The operators specific to strings are union, via | |, and intersection, via &&. Given the following
code, for S1 and S2 both arrays of strings,

strings Su
strings Si

S1 || S2
S1 && S2
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the array Su will contain all the strings in S1 plus any in S2 that are not in S1, while Si will contain
all and only the strings that appear in both S1 and S2.

Arrays as function arguments

One can write hansl functions that take as arguments any of the array types, and it is possible to
pass arrays as function arguments in “pointerized” form. In addition hansl functions may return
any of the array types. Here is a trivial example for strings:

function void printstrings (strings *S)
Toop i=1..nelem(S)
printf "element %d: '%s’\n", i, S[i]
endTloop
end function

function strings mkstrs (int n)
strings S = array(n)

Toop i=1..n

S[i] = sprintf("member %d", i)
endloop
return S

end function

strings Foo = mkstrs(5)
print Foo
printstrings(&Foo)

A couple of points are worth noting here. First, the nelem() function works to give the number of
elements in any of the “container” types (lists, arrays, bundles, matrices). Second, if you do “print
Foo” for Foo an array, you'll see something like:

? print Foo
Array of strings, length 5

Nesting arrays

While gretl’s array structure is in itself one-dimensional you can add extra dimensions by nesting.
For example, the code below creates an array holding »n arrays of m bundles.

arrays BB = array(n)
Toop i=1..n

bundles BB[i] = array(m)
endloop

The syntax for setting or accessing any of the n x m bundles (or their members) is then on the
following pattern:

BB[il1[j]l.m = I(3)
eval BB[i][j]
eval BB[i][j].m # or eval BB[i][j]["m"]

where the respective array subscripts are each put into square brackets.

The elements of an array of arrays must (obviously) all be arrays, but it’s not required that they
have a common content-type. For example, the following code creates an array holding an array of
matrices plus an array of strings.

arrays AA = array(2)
matrices AA[1l] = array(3)
strings AA[2] = array(3)
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Arrays and bundles

As mentioned, the bundle type is supported by the array mechanism. In addition, arrays (of what-
ever type) can be put into bundles:

matrices M = array(8)

# set values of M[i] here...
bundle b

b.M =M

The mutual “packability” of bundles and arrays means that it’s possible to go quite far down the
rabbit-hole... users are advised not to get carried away.

11.9 The life cycle of gretl objects
Creation
The most basic way to create a new variable of any type is by declaration, where one states the type

followed by the name of the variable to create, as in

scalar x
series y
matrix A

and so forth. In that case the object in question is given a default initialization, as follows: a new
scalar has value NA (missing); a new series is filled with NAs; a new matrix is null (zero rows and
columns); a new string is empty; a new list has no members, new bundle and new arrays are empty.

Declaration can be supplemented by a definite initialization, as in

scalar x = pi
series y = log(x)
matrix A = zeros(10,4)

The type of a new variable can be left implicit, as in

x = y/100
z = 3.5

Here the type of x will be determined automatically depending on the context. If y is a scalar,
a series or a matrix x will inherit y’s type (otherwise an error will be generated, since division is
applicable to these types only). The new variable z will “naturally” be of scalar type.

In general, however, we recommend that you state the type of a new variable explicitly. This makes
the intent clearer to a reader of the script and also guards against errors that might otherwise be
difficult to understand (i.e. a certain variable turns out to be of the wrong type for some subsequent
calculation, but you don’t notice at first because you didn’t say what type you wanted). Exceptions
to this rule might reasonably be granted for clear and simple cases where there’s little possibility
of confusion.

Modification

Typically, the values of variables of all types are modified by assignment, using the = operator with
the name of the variable on the left and a suitable value or formula on the right:

z = normal()
x = 100 * Tog(y) - log(y(-1))
M = gform(a, X)



Chapter 11. Gretl data types 94

By a “suitable” value we mean one that is conformable for the type in question. A gretl variable
acquires its type when it is first created and this cannot be changed via assignment; for example, if
you have a matrix A and later want a string A, you will have to delete the matrix first.

= One point to watch out for in gretl scripting is type conflicts having to do with the names of series brought
in from a data file. For example, in setting up a command loop (see chapter 13) it is very common to call
the loop index i. Now a loop index is a scalar (typically incremented each time round the loop). If you open
a data file that happens to contain a series named i you will get a type error (“Types not conformable for
operation”) when you try to use i as a loop index.

Although the type of an existing variable cannot be changed on the fly, gretl nonetheless tries to be
as “understanding” as possible. For example if x is an existing series and you say

x = 100

gretl will give the series a constant value of 100 rather than complaining that you are trying to
assign a scalar to a series. This issue is particularly relevant for the matrix type —see chapter 17
for details.

Besides using the regular assignment operator you also have the option of using an “inflected”
equals sign, as in the C programming language. This is shorthand for the case where the new value
of the variable is a function of the old value. For example,

x += 100 # in Tonghand: x = x + 100
X *= 100 # in Tonghand: x = x * 100

For scalar variables you can use a more condensed shorthand for simple increment or decrement
by 1, namely trailing ++ or -- respectively:

x = 100
X-- # X now equals 99
X++ # x now equals 100

In the case of objects holding more than one value — series, matrices and bundles—you can mod-
ify particular values within the object using an expression within square brackets to identify the
elements to access. We have discussed this above for the bundle type and chapter 17 goes into
details for matrices. As for series, there are two ways to specify particular values for modification:
you can use a simple 1-based index, or if the dataset is a time series or panel (or if it has marker
strings that identify the observations) you can use an appropriate observation string. Such strings
are displayed by gretl when you print data with the --byobs flag. Examples:

x[13] = 100 # simple index: the 13th observation

x[1995:4] = 100 # date: quarterly time series

x[2003:08] = 100 # date: monthly time series

x["AZ"] = 100 # the observation with marker string "AZ"
x[3:15] = 100 # panel: the 15th observation for the 3rd unit

Note that with quarterly or monthly time series there is no ambiguity between a simple index
number and a date, since dates always contain a colon. With annual time-series data, however,
such ambiguity exists and it is resolved by the rule that a number in brackets is always read as a
simple index: x[1905] means the nineteen-hundred and fifth observation, not the observation for
the year 1905. You can specify a year by quotation, as in x["1905"].

Destruction

Objects of the types discussed above, with the important exception of named lists, are all destroyed
using the delete command: delete objectname.
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Lists are an exception for this reason: in the context of gretl commands, a named list expands to
the ID numbers of the member series, so if you say

delete L

for L a list, the effect is to delete all the series in L; the list itself is not destroyed, but ends up
empty. To delete the list itself (without deleting the member series) you must invert the command
and use the 1ist keyword:

Tist L delete

Note that the deTete command cannot be used within a Toop construct (see chapter 13).
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Discrete variables

When a variable can take only a finite, typically small, number of values, then it is said to be discrete.
In gretl, variables of the series type (only) can be marked as discrete. (When we speak of “variables”
below this should be understood as referring to series.) Some gretl commands act in a slightly
different way when applied to discrete variables; moreover, gretl provides a few commands that
only apply to discrete variables. Specifically, the dummify and xtab commands (see below) are
available only for discrete variables, while the freq (frequency distribution) command produces
different output for discrete variables.

12.1 Declaring variables as discrete

Gretl uses a simple heuristic to judge whether a given variable should be treated as discrete, but
you also have the option of explicitly marking a variable as discrete, in which case the heuristic
check is bypassed.

The heuristic is as follows: First, are all the values of the variable “reasonably round”, where this
is taken to mean that they are all integer multiples of 0.25? If this criterion is met, we then ask
whether the variable takes on a “fairly small” set of distinct values, where “fairly small” is defined
as less than or equal to 8. If both conditions are satisfied, the variable is automatically considered
discrete.

To mark a variable as discrete you have two options.

1. From the graphical interface, select “Variable, Edit Attributes” from the menu. A dialog box
will appear and, if the variable seems suitable, you will see a tick box labeled “Treat this
variable as discrete”. This dialog box can also be invoked via the context menu (right-click on
a variable) or by pressing the F2 key.

2. From the command-line interface, via the discrete command. The command takes one or
more arguments, which can be either variables or list of variables. For example:

Tist x1list = x1 x2 x3
discrete z1 xlist z2

This syntax makes it possible to declare as discrete many variables at once, which cannot
presently be done via the graphical interface. The switch --reverse reverses the declaration
of a variable as discrete, or in other words marks it as continuous. For example:

discrete foo

# now foo is discrete
discrete foo --reverse
# now foo is continuous

The command-line variant is more powerful, in that you can mark a variable as discrete even if it
does not seem to be suitable for this treatment.

Note that marking a variable as discrete does not affect its content. It is the user’s responsibility
to make sure that marking a variable as discrete is a sensible thing to do. Note that if you want to
recode a continuous variable into classes, you can use gretl’s arithmetical functionality, as in the
following example:
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nulldata 100

# generate a series with mean 2 and variance 1
series x = normal() + 2

# split into 4 classes

series z = (x>0) + (x>2) + (x>4)

# now declare z as discrete

discrete z

Once a variable is marked as discrete, this setting is remembered when you save the data file.

12.2 Commands for discrete variables

The dummify command

The dummify command takes as argument a series x and creates dummy variables for each distinct
value present in x, which must have already been declared as discrete. Example:

open greene22_2
discrete Z5 # mark Z5 as discrete
dummify Z5

The effect of the above command is to generate 5 new dummy variables, labeled DZ5_1 through
DZ5_5, which correspond to the different values in Z5. Hence, the variable DZ5_4 is 1 if Z5 equals
4 and 0 otherwise. This functionality is also available through the graphical interface by selecting
the menu item “Add, Dummies for selected discrete variables”.

The dummify command can also be used with the following syntax:
Tist dlist = dummify(x)

This not only creates the dummy variables, but also a named list (see section 15.1) that can be used
afterwards. The following example computes summary statistics for the variable Y for each value
of Z5:

open greene22_2

discrete Z5 # mark Z5 as discrete

Tist foo = dummify(Z5)

loop foreach i foo
smpl $i --restrict --replace
summary Y

endTloop

smp1 --full

Since dummi fy generates a list, it can be used directly in commands that call for a list as input, such
as ols. For example:

open greene22_2
discrete Z5 # mark Z5 as discrete
ols Y O dummify(Z5)

The freq command

The freq command displays absolute and relative frequencies for a given variable. The way fre-
quencies are counted depends on whether the variable is continuous or discrete. This command is
also available via the graphical interface by selecting the “Variable, Frequency distribution” menu
entry.
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For discrete variables, frequencies are counted for each distinct value that the variable takes. For
continuous variables, values are grouped into “bins” and then the frequencies are counted for each
bin. The number of bins, by default, is computed as a function of the number of valid observations
in the currently selected sample via the rule shown in Table 12.1. However, when the command is
invoked through the menu item “Variable, Frequency Plot”, this default can be overridden by the
user.

Observations Bins
8<n<16 5
16 < <50 7

50<n <850 [ n]

n > 850 29

Table 12.1: Number of bins for various sample sizes

For example, the following code

open greenel9_1

freq TUCE

discrete TUCE # mark TUCE as discrete
freq TUCE

yields
Read datafile /usr/local/share/gretl/data/greene/greenel9_1.gdt
periodicity: 1, maxobs: 32,

observations range: 1-32

Listing 5 variables:
0) const 1) GPA 2) TUCE 3) PSI 4) GRADE

? freq TUCE

Frequency distribution for TUCE, obs 1-32
number of bins = 7, mean = 21.9375, sd = 3.90151

interval midpt  frequency rel. cum.
< 13.417 12.000 1 3.12% 3.12% *
13.417 - 16.250 14.833 1 3.12% 6.25% *
16.250 - 19.083 17.667 6 18.75%  25.00% **
19.083 - 21.917 20.500 6 18.75%  43.75% **
21.917 - 24.750 23.333 9 28.12%  71.88% ** ®
24.750 - 27.583 26.167 7 21.88% 93.75%
>= 27.583 29.000 2 6.25% 100.00% **

Test for null hypothesis of normal distribution:
Chi-square(2) = 1.872 with p-value 0.39211

? discrete TUCE # mark TUCE as discrete

? freq TUCE

Frequency distribution for TUCE, obs 1-32

frequency rel. cum.
12 1 3.12% 3.12% *
14 1 3.12% 6.25% *

17 3 9.38%  15.62% *¥*
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19 3 9.38%  25.00% ***
20 2 6.25%  31.25% **
21 4 12.50%  43.75% *¥**
22 2 6.25% 50.00% *
23 4 12.50%  62.50% *
24 3 9.38% 71.88% *
25 4 12.50%  84.38% *
26 2 6.25%  90.62% **
27 1 3.12%  93.75% *
28 1 3.12% 96.88% *
29 1 3.12% 100.00% *

Test for null hypothesis of normal distribution:
Chi-square(2) = 1.872 with p-value 0.39211

As can be seen from the sample output, a Doornik-Hansen test for normality is computed auto-
matically. This test is suppressed for discrete variables where the number of distinct values is less
than 10.

This command accepts two options: --quiet, to avoid generation of the histogram when invoked
from the command line and --gamma, for replacing the normality test with Locke’s nonparametric
test, whose null hypothesis is that the data follow a Gamma distribution.

If the distinct values of a discrete variable need to be saved, the values () matrix construct can be
used (see chapter 17).

The xtab command

The xtab command cab be invoked in either of the following ways. First,
xtab ylist ; xTist

where y1list and xTist are lists of discrete variables. This produces cross-tabulations (two-way
frequencies) of each of the variables in yTist (by row) against each of the variables in x1ist (by
column). Or second,

xtab xTist

In the second case a full set of cross-tabulations is generated; that is, each variable in x11ist is tabu-
lated against each other variable in the list. In the graphical interface, this command is represented
by the “Cross Tabulation” item under the View menu, which is active if at least two variables are
selected.

Here is an example of use:
open greene22_2

discrete Z* # mark Z1-Z8 as discrete
xtab 71 74 ; 75 76

which produces
Cross-tabulation of Z1 (rows) against Z5 (columns)
[ 110 21C 31[ 41C 51 ToOT.

[ 0] 20 91 75 93 36 315
[ 1] 28 73 54 97 34 286

TOTAL 48 164 129 190 70 601
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Pearson chi-square test = 5.48233 (4 df, p-value = 0.241287)
Cross-tabulation of Z1 (rows) against Z6 (columns)

[ oIl 12][ 141[ 1e61[ 17][ 181[ 20] TOT.

[ 0] 4 36 106 70 52 45 2 315
[ 1] 3 8 48 45 37 67 78 286
TOTAL 7 44 154 115 89 112 80 601

Pearson chi-square test = 123.177 (6 df, p-value = 3.50375e-24)
Cross-tabulation of Z4 (rows) against Z5 (columns)
[ 11C 21C 31C 41 5] TOT.

[ 0] 17 60 35 45 14 171
[ 1] 31 104 94 145 56 430

TOTAL 48 164 129 190 70 601
Pearson chi-square test = 11.1615 (4 df, p-value = 0.0248074)
Cross-tabulation of Z4 (rows) against Z6 (columns)

[ 9][ 12][ 14][C 1e][ 17][ 18][ 20] TOT.

[ 0] 1 8 39 47 30 32 14 171
[ 1] 6 36 115 68 59 80 66 430
TOTAL 7 44 154 115 89 112 80 601

Pearson chi-square test = 18.3426 (6 df, p-value = 0.0054306)

Pearson’s x? test for independence is automatically displayed, provided that all cells have expected
frequencies under independence greater than 10~7. However, a common rule of thumb states that
this statistic is valid only if the expected frequency is 5 or greater for at least 80 percent of the
cells. If this condition is not met a warning is printed.

Additionally, the --row or --column options can be given: in this case, the output displays row or
column percentages, respectively.

If you want to cut and paste the output of xtab to some other program, e.g. a spreadsheet, you
may want to use the --zeros option; this option causes cells with zero frequency to display the
number 0 instead of being empty.
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Loop constructs

13.1 Introduction

The command loop opens a special mode in which gretl accepts a block of commands to be re-
peated zero or more times. This feature may be useful for, among other things, Monte Carlo
simulations, bootstrapping of test statistics and iterative estimation procedures. The general form
of a loop is:

loop control-expression [ --progressive | --verbose ]
Toop body
endloop

Five forms of control-expression are available, as explained in section 13.2.

Not all gretl commands are available within loops. The commands that are not presently accepted
in this context are shown in Table 13.1.

Table 13.1: Commands not usable in loops

function dinclude nulldata quit run setmiss

By default, the genr command operates quietly in the context of a loop (without printing informa-
tion on the variable generated). To force the printing of feedback from genr you may specify the
--verbose option to loop.

The --progressive option to Toop modifies the behavior of the commands print and store,
and certain estimation commands, in a manner that may be useful with Monte Carlo analyses (see
Section 13.3).

The following sections explain the various forms of the loop control expression and provide some
examples of use of loops.

== |f you are carrying out a substantial Monte Carlo analysis with many thousands of repetitions, memory
capacity and processing time may be an issue. To minimize the use of computer resources, run your script
using the command-line program, gretlcli, with output redirected to a file.

13.2 Loop control variants

Count loop

The simplest form of loop control is a direct specification of the number of times the loop should
be repeated. We refer to this as a “count loop”. The number of repetitions may be a numerical
constant, as in Toop 1000, or may be read from a scalar variable, as in Toop replics.

In the case where the loop count is given by a variable, say replics, in concept replics is an
integer; if the value is not integral, it is converted to an integer by truncation. Note that replics is
evaluated only once, when the loop is initially compiled.
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While loop

A second sort of control expression takes the form of the keyword while followed by a Boolean
expression. For example,

Toop while essdiff > .00001

Execution of the commands within the loop will continue so long as (a) the specified condition
evaluates as true and (b) the number of iterations does not exceed the value of the internal variable
Toop_maxiter. By default this equals 100000, but you can specify a different value (or remove the
limit) via the set command (see the Gretl Command Reference).

Index loop

A third form of loop control uses an index variable, for example i.! In this case you specify starting
and ending values for the index, which is incremented by one each time round the loop. The syntax
looks like this: Toop i=1..20.

The index variable may be a pre-existing scalar; if this is not the case, the variable is created
automatically and is destroyed on exit from the loop.

The index may be used within the loop body in either of two ways: you can access the integer value
of i or you can use its string representation, $1i.

The starting and ending values for the index can be given in numerical form, by reference to pre-
defined scalar variables, or as expressions that evaluate to scalars. In the latter two cases the
variables are evaluated once, at the start of the loop. In addition, with time series data you can give
the starting and ending values in the form of dates, as in Toop 1=1950:1..1999:4.

This form of loop control is intended to be quick and easy, and as such it is subject to certain
limitations. In particular, the index variable is always incremented by one at each iteration. If, for
example, you have

Toop i=m..n

where m and n are scalar variables with values m > n at the time of execution, the index will not be
decremented; rather, the loop will simply be bypassed.

If you need more complex loop control, see the “for” form below.

The index loop is particularly useful in conjunction with the values () matrix function when some
operation must be carried out for each value of some discrete variable (see chapter 12). Consider
the following example:

open greene22_2
discrete Z8
v8 = values(Z8)
Toop i=1..rows(v8)
scalar xi = v8[i]
smpl Z8==xi --restrict --replace
printf "mean(Y | Z8 = %g) = %8.5f, sd(Y | Z8 = %g) = %g\n", \
xi, mean(Y), xi, sd(Y)
endTloop

In this case, we evaluate the conditional mean and standard deviation of the variable Y for each
value of Z8.

It is common programming practice to use simple, one-character names for such variables. However, you may use
any name that is acceptable by gretl: up to 31 characters, starting with a letter, and containing nothing but letters,
numerals and the underscore character.
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Foreach loop

The fourth form of loop control also uses an index variable, in this case to index a specified set
of strings. The loop is executed once for each string in the list. This can be useful for performing
repetitive operations on a list of variables. Here is an example of the syntax:

loop foreach i peach pear plum
print "$i"
endloop

This loop will execute three times, printing out “peach”, “pear” and “plum” on the respective itera-
tions. The numerical value of the index starts at 1 and is incremented by 1 at each iteration.

If you wish to loop across a list of variables that are contiguous in the dataset, you can give the
names of the first and last variables in the list, separated by “..”, rather than having to type all
the names. For example, say we have 50 variables AK, AL, ..., WY, containing income levels for the
states of the US. To run a regression of income on time for each of the states we could do:

genr time

loop foreach i AL..WY
ols $i const time

endloop

This loop variant can also be used for looping across the elements in a named list (see chapter 15).
For example:

Tist ylist = yl y2 y3
loop foreach i ylist

ols $i const x1 x2
endloop

Note that if you use this idiom inside a function (see chapter 14), looping across a list that has been
supplied to the function as an argument, it is necessary to use the syntax listname.$i to reference
the list-member variables. In the context of the example above, this would mean replacing the third
line with

ols ylist.$i const x1 x2

Two other cases are supported: the target of foreach can be a named array of strings or a bundle
(see chapter 11). In the array case, $i gets (naturally) the string at position i in the array, from
1 to the number of elements; in the bundle case it gets the key-strings of all bundle members (in
no particular order). For a bundle b, the command “print b” gives a fairly terse account of the
bundle’s membership; for a full account you can do:

loop foreach i b

print "$i:"
eval b["$i"]
endloop
For loop

The final form of loop control emulates the for statement in the C programming language. The
sytax is Toop for, followed by three component expressions, separated by semicolons and sur-
rounded by parentheses. The three components are as follows:

1. Initialization: This is evaluated only once, at the start of the loop. Common example: setting
a scalar control variable to some starting value.
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2. Continuation condition: this is evaluated at the top of each iteration (including the first). If
the expression evaluates as true (non-zero), iteration continues, otherwise it stops. Common
example: an inequality expressing a bound on a control variable.

3. Modifier: an expression which modifies the value of some variable. This is evaluated prior
to checking the continuation condition, on each iteration after the first. Common example: a
control variable is incremented or decremented.

Here’s a simple example:
Toop for (r=0.01; r<.991; r+=.01)

In this example the variable r will take on the values 0.01, 0.02, ..., 0.99 across the 99 iterations.
Note that due to the finite precision of floating point arithmetic on computers it may be necessary
to use a continuation condition such as the above, r<.991, rather than the more “natural” r<=.99.
(Using double-precision numbers on an x86 processor, at the point where you would expect r to
equal 0.99 it may in fact have value 0.990000000000001.)

Any or all of the three expressions governing a for loop may be omitted —the minimal form is
(; ;). If the continuation test is omitted it is implicitly true, so you have an infinite loop unless you
arrange for some other way out, such as a break statement.

If the initialization expression in a for loop takes the common form of setting a scalar variable to
a given value, the string representation of that scalar’s value is made available within the loop via
the accessor $varname.

13.3 Progressive mode

If the --progressive option is given for a command loop, special behavior is invoked for certain
commands, namely, print, store and simple estimation commands. By “simple” here we mean
commands which (a) estimate a single equation (as opposed to a system of equations) and (b) do
so by means of a single command statement (as opposed to a block of statements, as with n1s and
mle). The paradigm is ols; other possibilities include ts1s, wls, Togit and so on.

The special behavior is as follows.

Estimators: The results from each individual iteration of the estimator are not printed. Instead,
after the loop is completed you get a printout of (a) the mean value of each estimated coefficient
across all the repetitions, (b) the standard deviation of those coefficient estimates, (c) the mean
value of the estimated standard error for each coefficient, and (d) the standard deviation of the
estimated standard errors. Note that this is useful only if there is some random input at each step.

print: When this command is used to print the value of a variable, its value is not printed each
time round the loop. Rather, when the loop is terminated you get a printout of the mean and
standard deviation of the variable, across the repetitions of the loop. This mode is intended for use
with variables that have a scalar value at each iteration, for example the sum of squared residuals
from a regression. Series cannot be printed in this way, and neither can matrices.

store: This command writes out the values of the specified scalars, from each time round the
loop, to a specified file. Thus it keeps a complete record of their values across the iterations. For
example, coefficient estimates could be saved in this way so as to permit subsequent examination
of their frequency distribution. Only one such store can be used in a given loop.

13.4 Loop examples

Monte Carlo example

A simple example of a Monte Carlo loop in “progressive” mode is shown in Listing 13.1.
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Listing 13.1: Simple Monte Carlo loop [Download V]|

nulldata 50
set seed 547
series x = 100 * uniform()
# open a "progressive" loop, to be repeated 100 times
Toop 100 --progressive
series u = 10 * normal()
# construct the dependent variable
series y = 10*x + u
# run OLS regression
ols y const x
# grab the coefficient estimates and R-squared
scalar a = $coeff(const)
scalar b = $coeff(x)
scalar r2 = $rsq
# arrange for printing of stats on these
print a b r2
# and save the coefficients to file
store coeffs.gdt a b
endloop

This loop will print out summary statistics for the a and b estimates and R? across the 100 rep-
etitions. After running the loop, coeffs.gdt, which contains the individual coefficient estimates
from all the runs, can be opened in gretl to examine the frequency distribution of the estimates in
detail.

The nulldata command is useful for Monte Carlo work. Instead of opening a “real” data set,
nulldata 50 (for instance) creates an artificial dataset, containing just a constant and an index
variable, with 50 observations. Constructed variables can then be added. See the set command for
information on generating repeatable pseudo-random series.

Iterated least squares

Listing 13.2 uses a “while” loop to replicate the estimation of a nonlinear consumption function of
the form
C=a+pYY+e€

as presented in Greene (2000), Example 11.3. This script is included in the gretl distribution under
the name greenell_3.1inp; you can find it in gretl under the menu item “File, Script files, Example
scripts, Greene...”.

The option --print-final for the ols command arranges matters so that the regression results
will not be printed each time round the loop, but the results from the regression on the last iteration
will be printed when the loop terminates.

Listing 13.3 shows how a loop can be used to estimate an ARMA model, exploiting the “outer
product of the gradient” (OPG) regression discussed by Davidson and MacKinnon (1993).

Further examples of Toop usage that may be of interest can be found in chapter 21.
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Listing 13.2: Nonlinear consumption function [Download v]

open greenell_3.gdt

# run initial OLS

ols CO0Y

scalar essbak = $ess
scalar essdiff =1
scalar beta = $coeff(Y)
scalar gamma = 1

# iterate OLS till the error sum of squares converges
Toop while essdiff > .00001

# form the linearized variables

series CO = C + gamma * beta * YAgamma * Tog(Y)

series x1 = YAgamma
series x2 = beta * YAgamma * Tog(Y)
# run OLS

ols CO 0 x1 x2 --print-final --no-df-corr --vcv
beta = $coeff[2]
gamma = $coeff[3]
ess = $ess
essdiff = abs(ess - essbak)/essbak
essbhak = ess
endloop

# print parameter estimates using their "proper names"
printf "alpha = %g\n", $coeff[1]

printf "beta = %g\n", beta

printf "gamma = %g\n", gamma
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Listing 13.3: ARMA 1, 1 [Download v|

# Estimation of an ARMA(1,1) model "manually", using a loop

open arma.

scalar c
scalar a
scalar m

series e

series de_
series de_
series de_|

scalar crit

gdt

[eoNeNe)

.1
1

0.0
c=e
a=e
m=e

1

Toop while crit > 1.0e-9
# one-step forecast errors
e=y - c-a*y(-1) - m¥e(-1)

# log-TikeTihood
Toglik = -0.5 *

scalar

print loglik

# partials of
de_c =-1-m
de_a = -y(-1)
de_m = -e(-1)

# partials of
series sc_c =
series sc_a =
series sc_m =

sum(eA2)

e with respect to c, a, and m

* de_c(-

-m * de_
-m * de_

D
a(-1)
m(-1)

1 with respect to c, a and m

-de_c *
-de_a *
-de_m *

# OPG regression
ols const sc_c sc_a sc_m --print-final --no-df-corr --vcv

e
e
e

# Update the parameters

Cc += $coeff[1]
a += $coeff[2]
m += $coeff[3]

# show progress

printf " constant

printf " arl coefficient

printf "

crit = $T - $ess

print crit
endloop
scalar se_c = $stderr[1]
scalar se_a = $stderr[2]
scalar se_m = $stderr[3]

printf "\n"

printf "constant

printf "arl coefficient
printf "mal coefficient

%.89 (se
%.8g9 (se
%.89 (se

%.8g (gradient %#.6g)\n", c, $coeff[1]
%.89g (gradient %#.6g)\n", a, $coeff[2]
mal coefficient = %.8g (gradient %#.6g)\n", m, $coeff[3]

%#.6g, t = %.4f)\n", c, se_c, c/se_c
%#.6g, t = %.4f)\n", a, se_a, a/se_a
%#.69, t = %.4f)\n", m, se_m, m/se_m
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Chapter 14

User-defined functions

14.1 Defining a function

Gretl offers a mechanism for defining functions, which may be called via the command line, in
the context of a script, or (if packaged appropriately, see section 14.5) via the program’s graphical
interface.

The syntax for defining a function looks like this:

function type funcname (parameters)
function body
end function

The opening line of a function definition contains these elements, in strict order:

1. The keyword function.

2. type, which states the type of value returned by the function, if any. This must be one of void
(if the function does not return anything), scalar, series, matrix, 1ist, string, bundle or
one of gretl’s array types, matrices, bundles, strings (see section 11.8).

3. funcname, the unique identifier for the function. Function names have a maximum length of
31 characters; they must start with a letter and can contain only letters, numerals and the
underscore character. You will get an error if you try to define a function having the same
name as an existing gretl command.

4. The function’s parameters, in the form of a comma-separated list enclosed in parentheses.
This may be run into the function name, or separated by white space as shown. In case the
function takes no arguments (unusual, but acceptable) this should be indicated by placing the
keyword void between the parameter-list parentheses.

Function parameters can be of any of the types shown below.!

Type Description
bool scalar variable acting as a Boolean switch
int scalar variable acting as an integer
scalar scalar variable
series data series
Tist named list of series
matrix matrix or vector
string string variable or string literal
bundle all-purpose container (see section 11.7)

matrices array of matrices (see section 11.8)
bundTes array of bundles
strings array of strings

1 An additional parameter type is available for GUI use, namely obs; this is equivalent to int except for the way it is
represented in the graphical interface for calling a function.
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Each element in the listing of parameters must include two terms: a type specifier, and the name
by which the parameter shall be known within the function. An example follows:

function scalar myfunc (series y, list xvars, bool verbose)

Each of the type-specifiers, with the exception of 1ist and string, may be modified by prepending
an asterisk to the associated parameter name, as in

function scalar myfunc (series *y, scalar *b)

The meaning of this modification is explained below (see section 14.4); it is related to the use of
pointer arguments in the C programming language.

Function parameters: optional refinements
Besides the required elements mentioned above, the specification of a function parameter may
include some additional fields, as follows:

¢ The const modifier.

e For scalar or int parameters: minimum, maximum and/or default values; or for bool pa-
rameters, just a default value.

e For optional arguments other than scalar, int and boo1l, the special default value nul1.
e For all parameters, a descriptive string.

e For int parameters with minimum and maximum values specified, a set of strings to associate
with the allowed numerical values (value labels).

The first three of these options may be useful in many contexts; the last two may be helpful if a
function is to be packaged for use in the gretl GUI (but probably not otherwise). We now expand on
each of the options.

e The const modifier: must be given as a prefix to the basic parameter specification, as in
const matrix M

This constitutes a promise that the corresponding argument will not be modified within the
function; gretl will flag an error if the function attempts to modify the argument.

e Minimum, maximum and default values for scalar or int types: These values should di-
rectly follow the name of the parameter, enclosed in square brackets and with the individual
elements separated by colons. For example, suppose we have an integer parameter order for
which we wish to specify a minimum of 1, a maximum of 12, and a default of 4. We can write

int order[1:12:4]

If you wish to omit any of the three specifiers, leave the corresponding field empty. For
example [1::4] would specify a minimum of 1 and a default of 4 while leaving the maximum
unlimited. However, as a special case, it is acceptable to give just one value, with no colons,
in which case the value is interpreted as a default. So for example

int k[0]

designates a default value of 0 for the parameter k, with no minimum or maximum specified.
If you wished to specify a minimum of zero with no maximum or default you would have to
write
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int k[0::]

For a parameter of type bool (whose values are just zero or non-zero), you can specify a
default of 1 (true) or O (false), as in

bool verbose[0]

e Descriptive string: This will show up as an aid to the user if the function is packaged (see
section 14.5 below) and called via gretl’s graphical interface. The string should be enclosed
in double quotes and separated from the preceding elements of the parameter specification
with a space, as in

series y "dependent variable"

e Value labels: These may be used only with int parameters for which minimum and maximum
values have been specified (so that there is a fixed number of admissible values) and the
number of labels must match the number of values. They will show up in the graphical
interface in the form of a drop-down list, making the function writer’s intent clearer when an
integer argument represents a categorical selection. A set of value labels must be enclosed in
braces, and the individual labels must be enclosed in double quotes and separated by commas
or spaces. For example:

int case[1l:3:1] {"Fixed effects", "Between model", "Random effects"}

If two or more of the trailing optional fields are given in a parameter specification, they must be
given in the order shown above: min/max/default, description, value labels. Note that there is
no facility for “escaping” characters within descriptive strings or value labels; these may contain
spaces but they cannot contain the double-quote character.

Here is an example of a well-formed function specification using all the elements mentioned above:

function matrix myfunc (series y "dependent variable",
Tist X "regressors",
int p[0::1] "lag order",
int c[1:2:1] "criterion" {"AIC", "BIC"},
bool quiet[0])

One advantage of specifying default values for parameters, where applicable, is that in script or
command-line mode users may omit trailing arguments that have defaults. For example, myfunc
above could be invoked with just two arguments, corresponding to y and X; implicitly p=1,c=1
and quiet is false.

Functions taking no parameters
You may define a function that has no parameters (these are called “routines” in some programming
languages). In this case, use the keyword void in place of the listing of parameters:

function matrix myfunc2 (void)

The function body

The function body is composed of gretl commands, or calls to user-defined functions (that is,
function calls may be nested). A function may call itself (that is, functions may be recursive). While
the function body may contain function calls, it may not contain function definitions. That is, you
cannot define a function inside another function. For further details, see section 14.4.
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14.2 Calling a function

A user function is called by typing its name followed by zero or more arguments enclosed in
parentheses. If there are two or more arguments they must be separated by commas.

There are automatic checks in place to ensure that the number of arguments given in a function
call matches the number of parameters, and that the types of the given arguments match the types
specified in the definition of the function. An error is flagged if either of these conditions is violated.
One qualification: allowance is made for omitting arguments at the end of the list, provided that
default values are specified in the function definition. To be precise, the check is that the number
of arguments is at least equal to the number of required parameters, and is no greater than the
total number of parameters.

In general, an argument to a function may be given either as the name of a pre-existing variable or
as an expression which evaluates to a variable of the appropriate type.

The following trivial example illustrates a function call that correctly matches the corresponding
function definition.

# function definition

function scalar ols_ess (series y, Tlist xvars)
ols y 0 xvars --quiet
printf "ESS = %g\n", $ess
return $ess

end function

# main script

open data4-1

Tist xlist = 2 3 4

# function call (the return value is ignored here)
ols_ess(price, xlist)

The function call gives two arguments: the first is a data series specified by name and the second is
a named list of regressors. Note that while the function offers the Error Sum of Squares as a return
value, it is ignored by the caller in this instance. (As a side note here, if you want a function to
calculate some value having to do with a regression, but are not interested in the full results of the
regression, you may wish to use the --quiet flag with the estimation command as shown above.)

A second example shows how to write a function call that assigns a return value to a variable in the
caller:

# function definition

function series get_uhat (series y, list xvars)
ols y 0 xvars --quiet
return $uhat

end function

# main script

open data4-1

Tist xlist =2 3 4

# function call

series resid = get_uhat(price, xlist)

14.3 Deleting a function

If you have defined a function and subsequently wish to clear it out of memory, you can do so using
the keywords delete or clear, as in

function myfunc delete
function get_uhat clear
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Note, however, that if myfunc is already a defined function, providing a new definition automatically
overwrites the previous one, so it should rarely be necessary to delete functions explicitly.

14.4 Function programming details
Variables versus pointers

Most arguments to functions can be passed in two ways: “as they are”, or via pointers (the exception
is the list type, which cannot be passed as a pointer). First consider the following rather artificial
example:

function series triplel (series x)
return 3*x
end function

function void triple2 (series *x)
X *= 3
end function

nulldata 10

series y = normal()
series y3 = triplel(y)
print y3

triple2(&y)

print y

These two functions produce essentially the same result—the two print statements in the caller
will show the same values—but in quite different ways. The first explicitly returns a modified
version of its input (which must be a plain series): after the call to triplel, y is unaltered; it
would have been altered only if the return value were assigned back to y rather than y3. The
second function modifies its input (given as a pointer to a series) in place without actually returning
anything.

It’s worth noting that triple2 as it stands would not be considered idiomatic as a gretl function
(although it’s formally OK). The point here is just to illustrate the distinction between passing an
argument in the default way and in pointer form.

Why make this distinction? There are two main reasons for doing so: modularity and performance.

By modularity we mean the insulation of a function from the rest of the script which calls it. One of
the many benefits of this approach is that your functions are easily reusable in other contexts. To
achieve modularity, variables created within a function are local to that function, and are destroyed
when the function exits, unless they are made available as return values and these values are “picked
up” or assigned by the caller. In addition, functions do not have access to variables in “outer scope”
(that is, variables that exist in the script from which the function is called) except insofar as these
are explicitly passed to the function as arguments.

By default, when a variable is passed to a function as an argument, what the function actually “gets”
is a copy of the outer variable, which means that the value of the outer variable is not modified by
anything that goes on inside the function. This means that you can pass arguments to a function
without worrying about possible side effects; at the same time the function writer can use argument
variables as workspace without fear of disruptive effects at the level of the caller.

The use of pointers, however, allows a function and its caller to cooperate such that an outer
variable can be modified by the function. In effect, this allows a function to “return” more than one
value (although only one variable can be returned directly —see below). To indicate that a particular
object is to be passed as a pointer, the parameter in question is marked with a prefix of * in the
function definition, and the corresponding argument is marked with the complementary prefix & in
the caller. For example,
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function series get_uhat_and_ess(series y, list xvars, scalar *ess)
ols y 0 xvars --quiet
ess = $ess
series uh = $uhat
return uh
end function

open data4-1

Tist xlist = 2 3 4

scalar SSR

series resid = get_uhat_and_ess(price, xlist, &SSR)

In the above, we may say that the function is given the address of the scalar variable SSR, and it
assigns a value to that variable (under the local name ess). (For anyone used to programming in C:
note that it is not necessary, or even possible, to “dereference” the variable in question within the
function using the * operator. Unadorned use of the name of the variable is sufficient to access the
variable in outer scope.)

An “address” parameter of this sort can be used as a means of offering optional information to the
caller. (That is, the corresponding argument is not strictly needed, but will be used if present). In
that case the parameter should be given a default value of nuT1T1 and the the function should test to
see if the caller supplied a corresponding argument or not, using the built-in function exists().
For example, here is the simple function shown above, modified to make the filling out of the ess
value optional.

function series get_uhat_and_ess(series y, list xvars, scalar *ess[null])
ols y 0 xvars --quiet
if exists(ess)
ess = $ess
endif
return $uhat
end function
If the caller does not care to get the ess value, it can use nulT in place of a real argument:
series resid = get_uhat_and_ess(price, xlist, null)

Alternatively, trailing function arguments that have default values may be omitted, so the following
would also be a valid call:

series resid = get_uhat_and_ess(price, xlist)
One limitation on the use of pointer-type arguments should be noted: you cannot supply a given
variable as a pointer argument more than once in any given function call. For example, suppose we
have a function that takes two matrix-pointer arguments,

function scalar pointfunc (matrix *a, matrix *b)
And suppose we have two matrices, x and vy, at the caller level. The call

pointfunc(&x, &y)
is OK, but the call

pointfunc(&x, &x) # will not work

will generate an error. That’s because the situation inside the function would become too confusing,
with what is really the same object existing under two names.
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Const parameters

Pointer-type arguments may also be useful for optimizing performance. Even if a variable is not
modified inside the function, it may be a good idea to pass it as a pointer if it occupies a lot of
memory. Otherwise, the time gretl spends transcribing the value of the variable to the local copy
may be non-negligible compared to the time the function spends doing the job it was written for.

Listing 14.1 takes this to the extreme. We define two functions which return the number of rows
of a matrix (a pretty fast operation). The first gets a matrix as argument while the second gets a
pointer to a matrix. The functions are evaluated 500 times on a matrix with 2000 rows and 2000
columns; on a typical system floating-point numbers take 8 bytes of memory, so the total size of
the matrix is roughly 32 megabytes.

Running the code in example 14.1 will produce output similar to the following (the actual numbers
of course depend on the machine you’re using):

ETapsed time:
without pointers (copy)
with pointers (no copy)

2.47197 seconds,
0.00378627 seconds

Listing 14.1: Performance comparison: values versus pointer [Download V]

function scalar rowcountl (matrix X)
return rows(X)
end function

function scalar rowcount2 (const matrix *X)
return rows(X)
end function

set verbose off
X = zeros(2000,2000)
scalar r

set stopwatch
Toop 500
r = rowcountl(X)
endloop
el = $stopwatch

set stopwatch
Toop 500
r = rowcount2(&X)
endloop
e2 = $stopwatch

printf "Elapsed time:\n\
without pointers (copy)
with pointers (no copy)

%g seconds,\n \
%g seconds\n", el, e2

If a pointer argument is used for this sort of purpose—and the object to which the pointer points
is not modified (is treated as read-only) by the function—one can signal this to the user by adding
the const qualifier, as shown for function rowcount?2 in Listing 14.1. When a pointer argument is
qualified in this way, any attempt to modify the object within the function will generate an error.

However, combining the const flag with the pointer mechanism is technically redundant for the
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following reason: if you mark a matrix argument as const then gretl will in fact pass it in pointer
mode internally (since it can’t be modified within the function there’s no downside to simply mak-
ing it available to the function rather than copying it). So in the example above we could revise the
signature of the second function as

function scalar rowcount2a (const matrix X)

and call it with r = rowcount2a(X), for the same speed-up relative to rowcountl.

From the caller’s point of view the second option—using the const modifier without pointer
notation—is preferable, as it allows the caller to pass an object created “on the fly”. Suppose
the caller has two matrices, A and B, in scope, and wishes to pass their vertical concatenation as an
argument. The following call would work fine:

r = rowcount2a(A|B)

To use rowcount2, on the other hand, the caller would have to create a named variable first (since
you cannot give the “address” of a anonymous object such as A|B):

matrix AB = A|B
r = rowcount2 (&AB)

This requires an extra line of code, and leaves AB occupying memory after the call.

We have illustrated using a matrix parameter, but the const modifier may be used with the same
effect—namely, the argument is passed directly, without being copied, but is protected against
modification within the function—for all the types that support the pointer apparatus.

List arguments

The use of a named list as an argument to a function gives a means of supplying a function with
a set of variables whose number is unknown when the function is written—for example, sets of
regressors or instruments. Within the function, the list can be passed on to commands such as
ols.

A list argument can also be “unpacked” using a foreach loop construct, but this requires some
care. For example, suppose you have a list X and want to calculate the standard deviation of each
variable in the list. You can do:

loop foreach i X
scalar sd_$%$i = sd(X.$i)
endTloop

Please note: a special piece of syntax is needed in this context. If we wanted to perform the above
task on a list in a regular script (not inside a function), we could do

loop foreach i X
scalar sd_$i = sd($i)
endTloop

where $i gets the name of the variable at position i in the list, and sd($i) gets its standard
deviation. But inside a function, working on a list supplied as an argument, if we want to reference
an individual variable in the list we must use the syntax listname.varname. Hence in the example
above we write sd(X.$1).

This is necessary to avoid possible collisions between the name-space of the function and the name-
space of the caller script. For example, suppose we have a function that takes a list argument, and
that defines a local variable called y. Now suppose that this function is passed a list containing
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a variable named y. If the two name-spaces were not separated either we’d get an error, or the
external variable y would be silently over-written by the local one. It is important, therefore, that
list-argument variables should not be “visible” by name within functions. To “get hold of” such
variables you need to use the form of identification just mentioned: the name of the list, followed
by a dot, followed by the name of the variable.

Constancy of list arguments When a named list of variables is passed to a function, the function
is actually provided with a copy of the list. The function may modify this copy (for instance, adding
or removing members), but the original list at the level of the caller is not modified.

Optional list arguments If a list argument to a function is optional, this should be indicated by
appending a default value of null, as in

function scalar myfunc (scalar y, list X[null])

In that case, if the caller gives nulT1 as the list argument (or simply omits the last argument) the
named list X inside the function will be empty. This possibility can be detected using the neTem()
function, which returns 0 for an empty list.

String arguments

String arguments can be used, for example, to provide flexibility in the naming of variables created
within a function. In the following example the function mavg returns a list containing two moving
averages constructed from an input series, with the names of the newly created variables governed
by the string argument.

function 1list mavg (series y, string vname)
Tist retlist = null
string newname = sprintf("%s_2", vname)
retlist += genseries(newname, (y+y(-1)) / 2)
newname = sprintf("%s_4", vname)
retlist += genseries(newname, (y+y(-1)+y(-2)+y(-3)) / 4)
return retlist
end function

open data9-9
Tist malist = mavg(nocars, "nocars")
print malist --byobs

The last line of the script will print two variables named nocars_2 and nocars_4. For details on
the handling of named strings, see chapter 15.

If a string argument is considered optional, it may be given a nul1 default value, as in

function scalar foo (series y, string vname[null])

Retrieving the names of arguments

The variables given as arguments to a function are known inside the function by the names of the
corresponding parameters. For example, within the function whose signature is

function void somefun (series y)

we have the series known as y. It may be useful, however, to be able to determine the names of
the variables provided as arguments. This can be done using the function argname, which takes
the name of a function parameter as its single argument and returns a string. Here is a simple
illustration:
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function void namefun (series y)
printf "the series given as 'y’ was named %s\n", argname(y)
end function

open data9-7
namefun (QNC)

This produces the output
the series given as 'y’ was named QNC

Please note that this will not always work: the arguments given to functions may be anonymous
variables, created on the fly, as in somefun(Tog(QNC)) or somefun(CPI/100). In that case the
argname function returns an empty string. Function writers who wish to make use of this facility
should check the return from argname using the strlen() function: if this returns 0, no name was
found.

Return values

Functions can return nothing (just printing a result, perhaps), or they can return a single variable.
The return value, if any, is specified via a statement within the function body beginning with the
keyword return, followed by either the name of a variable (which must be of the type announced
on the first line of the function definition) or an expression which produces a value of the correct
type.

Having a function return a list or bundle is a way of permitting the “return” of more than one
variable. For example, you can define several series inside a function and package them as a list;
in this case they are not destroyed when the function exits. Here is a simple example, which also
illustrates the possibility of setting the descriptive labels for variables generated in a function.

function 1ist make_cubes (Tist xTist)
1ist cubes = null
loop foreach i xlist
series $i3 = (xTist.$i)A3
setinfo $i3 -d "cube of $i"
Tist cubes += $i3
endloop
return cubes
end function

open data4-1

Tist x1list = price sqft

Tist cubelist = make_cubes(x1ist)
print x1ist cubelist --byobs
Tabels

A return statement causes the function to return (exit) at the point where it appears within the
body of the function. A function may also exit when (a) the end of the function code is reached (in
the case of a function with no return value), (b) a gretl error occurs, or (c) a funcerr statement is
reached.

The funcerr keyword —which may be followed by a string enclosed in double quotes, or the name
of a string variable, or nothing—causes a function to exit with an error flagged. If a string is
provided (either literally or via a variable), this is printed on exit, otherwise a generic error message
is printed. This mechanism enables the author of a function to pre-empt an ordinary execution
error and/or offer a more specific and helpful error message. For example,

if nelem(xlist) ==
funcerr "x1ist must not be empty"
endif
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A function may contain more than one return statement, as in

function scalar multi (bool s)
if s
return 1000
else
return 10
endif
end function

However, it is recommended programming practice to have a single return point from a function
unless this is very inconvenient. The simple example above would be better written as

function scalar multi (bool s)
return s ? 1000 : 10
end function

Overloading

You may have noticed that several built-in functions in gretl are “overloaded” —that is, a given
argument slot may accept more than one type of argument, and the return value may depend on
the type of the argument in question. For instance, the argument x for the pdf () function may be
a scalar, series or matrix and the return type will match that choice on the caller’s part.

Since gretl-2021b this possibility also exists for user-defined functions. The meta-type numeric
can be used in place of a specific type to accept a scalar, series or matrix argument, and similarly
the return-type of a function can be marked as numeric.

As a function writer you can choose to be more restrictive than the default (which allows scalar,
series or matrix for any numeric argument). For instance, if you write a function in which two
arguments, x and y, are specified as numeric you might decide to disallow the case where x is
a matrix and y a series, or vice versa, as too complicated. You can use the typeof() function
to determine what types of arguments were supplied, and the funcerr command or errorif()
function to reject an unsupported combination.

If your function is going to return a certain specific type (say, matrix) regardless of the type of the
input, then the return value should be labeled accordingly: use numeric for the return only if it’s
truly unknown in advance.

Listing 14.2 offers an (admittedly artificial) example: its numeric inputs can be scalars, series or
column vectors but they must be of a single type.

Naturally, if your overloaded function is intended for public use you should state clearly in its
documentation what is supported and what is not.

Error checking

When gretl first reads and “compiles” a function definition there is minimal error-checking: the
only checks are that the function name is acceptable, and, so far as the body is concerned, that you
are not trying to define a function inside a function (see Section 14.1). Otherwise, if the function
body contains invalid commands this will become apparent only when the function is called and
its commands are executed.

Debugging

The usual mechanism whereby gretl echoes commands and reports on the creation of new variables
is by default suppressed when a function is being executed. If you want more verbose output from
a particular function you can use either or both of the following commands within the function:
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Listing 14.2: Example of overloaded function [Download V]|

function numeric x_plus_b_y (numeric x, scalar b, numeric y)
errorif(typeof(x) != typeof(y), "x and y must be of the same type")
if typeof(x) <= 2 # scalar or series

return x + b*y
elif rows(x) == rows(y) && cols(x) == 1 && cols(y) ==
return x + b*y
else
funcerr "x and y should be column vectors"
endif
end function

# call 1: x and y are scalars
eval x_plus_b_y(10, 3, 2)

# call 2: x and y are vectors
matrix x = mnormal (10, 1)
matrix y = mnormal(10, 1)
eval x_plus_b_y(x, 2, y)

open data4-1

# call 3: x and y are series

series bb = x_plus_b_y(bedrms, 0.5, baths)
print bb --byobs

set echo on
set messages on

Alternatively, you can achieve this effect for all functions via the command set debug 1. Usually
when you set the value of a state variable using the set command, the effect applies only to the
current level of function execution. For instance, if you do set messages on within function f1,
which in turn calls function f2, then messages will be printed for f1 but not f2. The debug variable,
however, acts globally; all functions become verbose regardless of their level.

Further, you can do set debug 2: in addition to command echo and the printing of messages, this
is equivalent to setting max_verbose (which produces verbose output from the BFGS maximizer) at
all levels of function execution.

14.5 Function packages

At various points above we have alluded to function packages, and the use of these via the gretl
GUL. This topic is covered in depth by the Gretl Function Package Guide. If you’re running gretl you
can find this under the Help menu. Alternatively you may download it from

https://sourceforge.net/projects/gretl/files/manual/
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Chapter 15

Named lists and strings

15.1 Named lists

Many gretl commands take one or more lists of series as arguments. To make this easier to handle
in the context of command scripts, and in particular within user-defined functions, gretl offers the
possibility of named lists.

Creating and modifying named lists

A named list is created using the keyword T1ist, followed by the name of the list, an equals sign,
and an expression that forms a list. The most basic sort of expression that works in this context is
a space-separated list of variables, given either by name or by ID number. For example,

Tist xlist =12 3 4
1ist reglist = income price
Note that the variables in question must be of the series type.

Two abbreviations are available in defining lists:

TR ]
%

¢ You can use the wildcard character, , to create a list of variables by name. For example,
dum* can be used to indicate all variables whose names begin with dum.

e You can use two dots to indicate a range of variables. For example income. . price indicates
the set of variables whose ID numbers are greater than or equal to that of income and less
than or equal to that of price.

In addition there are two special forms:

¢ If you use the keyword nulT1 on the right-hand side, you get an empty list.
o If you use the keyword dataset on the right, you get a list containing all the series in the
current dataset (except the pre-defined const).

The name of the list must start with a letter, and must be composed entirely of letters, numbers
or the underscore character. The maximum length of the name is 31 characters; list names cannot
contain spaces.

Once a named list has been created, it will be “remembered” for the duration of the gretl session
(unless you delete it), and can be used in the context of any gretl command where a list of variables
is expected. One simple example is the specification of a list of regressors:

Tist x1list = x1 x2 x3 x4
ols y 0 xTist

To get rid of a list, you use the following syntax:

Tist xTist delete

120
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Be careful: deTete xT1ist will delete the series contained in the list, so it implies data loss (which
may not be what you want). On the other hand, Tist x1ist delete will simply “undefine” the
x11 st identifier; the series themselves will not be affected.

Similarly, to print the names of the members of a list you have to invert the usual print command,
as in

Tist xTist print

If you just say print x1ist the list will be expanded and the values of all the member series will
be printed.

Lists can be modified in various ways. To redefine an existing list altogether, use the same syntax
as for creating a list. For example

Tist xlist =1 2 3
xlist =456

After the second assignment, x11ist contains just variables 4, 5 and 6.

To append or prepend variables to an existing list, we can make use of the fact that a named list
stands in for a “longhand” list. For example, we can do

Tist x1list = xTlist 5 6 7
xT1ist = 9 10 x1ist 11 12

Another option for appending a term (or a list) to an existing list is to use +=, as in
xTlist += cpi

To drop a variable from a list, use -=:
x1list -= cpi

In most contexts where lists are used in gretl, it is expected that they do not contain any duplicated
elements. If you form a new list by simple concatenation, as in Tist L3 = L1 L2 (where L1 and
L2 are existing lists), it’s possible that the result may contain duplicates. To guard against this you
can form a new list as the union of two existing ones:

Tist L3 = L1 || L2

The result is a list that contains all the members of L1, plus any members of L2 that are not already
in L1.

In the same vein, you can construct a new list as the intersection of two existing ones:
Tist L3 = L1 && L2

Here L3 contains all the elements that are present in both L1 and L2.

You can also subtract one list from another:
Tist L3 = L1 - L2

The result contains all the elements of L1 that are not present in L2.
Indexing into a defined list is also possible, as if it were a vector:

Tist L2 = L1[1:4]

This leaves L2 with the first four members of L1. Notice that the ordering of list members is
path-dependent.
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Lists and matrices

Another way of forming a list is by assignment from a matrix. The matrix in question must be
interpretable as a vector containing ID numbers of data series. It may be either a row or a column
vector, and each of its elements must have an integer part that is no greater than the number of
variables in the data set. For example:

matrix m = {1,2,3,4}

Tist L m

The above is OK provided the data set contains at least 4 variables.
Querying a list
You can determine the number of variables or elements in a list using the function nelem().

Tist xlist =1 2 3

nl = nelem(xTist)
The (scalar) variable n1 will be assigned a value of 3 since x11 st contains 3 members.
You can determine whether a given series is a member of a specified list using the function
inTist(), asin

scalar k = inlist(L, y)

where L is a list and y a series. The series may be specified by name or ID number. The return value
is the (1-based) position of the series in the list, or zero if the series is not present in the list.

Generating lists of transformed variables
Given a named list of series, you are able to generate lists of transformations of these series using
the functions log, 1ags, diff, 1diff, sdiff or dummify. For example

Tist x1list = x1 x2 x3
Tist Ix1list = Tog(xTist)
Tist difflist = diff(x1ist)

When generating a list of Iags in this way, you specify the maximum lag order inside the parenthe-
ses, before the list name and separated by a comma. For example

Tist x1list = x1 x2 x3
Tist laglist = lags(2, xTist)

or

4
lags(order, xlist)

scalar order
Tist laglist

These commands will populate Tag1i st with the specified number of lags of the variables in x11st.
You can give the name of a single series in place of a list as the second argument to lags: this is
equivalent to giving a list with just one member.

The dummi fy function creates a set of dummy variables coding for all but one of the distinct values
taken on by the original variable, which should be discrete. (The smallest value is taken as the
omitted catgory.) Like lags, this function returns a list even if the input is a single series.
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Another useful operation you can perform with lists is creating interaction variables. Suppose you
have a discrete variable x;, taking values from 1 to n and a variable z;, which could be continuous
or discrete. In many cases, you want to “split” z; into a set of n variables via the rule

gV zi when x; =j
| 0 otherwise;

in practice, you create dummies for the x; variable first and then you multiply them all by z;; these
are commonly called the interactions between x; and z;. In gretl you can do

Tist H=D A Z
where D is a list of discrete series (or a single discrete series), Z is a list (or a single series)!; all the

interactions will be created and listed together under the name H.

An example is provided in script 15.1

Generating series from lists

There are various ways of retrieving or generating individual series from a named list. The most
basic method is indexing into the list. For example,

series x3 = X1list[3]

will retrieve the third element of the list X1ist under the name x3 (or will generate an error if
X11ist has less then three members).

In addition gretl offers several functions that apply to a list and return a series. In most cases,
these functions also apply to single series and behave as natural extensions when applied to lists,
but this is not always the case.

For recognizing and handling missing values, gretl offers several functions (see the Gretl Command
Reference for details). In this context, it is worth remarking that the ok () function can be used
with a list argument. For example,

Tist x1ist
series xok

x1 x2 x3
ok(xTist)

After these commands, the series xok will have value 1 for observations where none of x1, x2, or
x3 has a missing value, and value 0 for any observations where this condition is not met.

The functions max, min, mean, sd, sum and var behave “horizontally” rather than “vertically” when
their argument is a list. For instance, the following commands

Tist XTist = x1 x2 x3
series m = mean(Xlist)

produce a series m whose i-th element is the average of x1,;, x2; and x3 ;; missing values, if any, are
implicitly discarded.

In addition, gretl provides three functions for weighted operations: wmean, wsd and wvar. Consider
as an illustration Table 15.1: the first three columns are GDP per capita for France, Germany and
Italy; columns 4 to 6 contain the population for each country. If we want to compute an aggregate
indicator of per capita GDP, all we have to do is

Tist Ypc = YpcFR YpcGE YpcIT
Tist N = NFR NGE NIT
y = wmean(Ypc, N)

lwarning: this construct does not work if neither D nor Z are of the the list type.
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Input:

open mroz87.gdt --

Listing 15.1: Usage of interaction lists [Download v]|

quiet

# the coding below makes it so that

# KIDS = 0 -> no k

# KIDS = 1 -> young kids only

ids

# KIDS = 2 -> young or older kids

series KIDS = (KL6 > 0) + ((KL6 > 0) ||

(K618 > 0))

1ist D = CIT KIDS # interaction discrete variables
# variables to "split"

Tist X = WE WA

Tist INTER = D A X

smpl 1 6

print D X INTER -o

Output (selected portions):

CIT

1 0
2 1
3 0
4 0
5 1
6 1
WE_CIT_1

1 0
2 12
3 0
4 0
5 14
6 12
WE_KIDS_2

1 12
2 0
3 12
4 0
5 14
6 0

so for example

114.9 x 59830.635 + 124.6 x 82034.771 + 119.3 x 56890.372

KIDS

ONRENRLEN

WA_CIT_O

32

35
34

WA_KIDS_0

MO OCOOO

WE

12
12
12
12
14
12

WA_CIT_1

0
30
0
0
31
54

WA_KIDS_1

WA

32
30
35
34
31
54

WE_KIDS_0

NOOOOO

WA_KIDS_2

32

35

31

WE_CIT_O

12
0
12
12
0
0

WE_KIDS_1

Y1996 =

59830.635 + 82034.771 + 56890.372

See the Gretl Command Reference for more details.
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YpcFR  YpcGE YpcT NFR NGE NIT

1997 1149 124.6 119.3 59830.635 82034.771 56890.372
1998 115.3 122.7 120.0 60046.709 82047.195 56906.744
1999 115.0 1224 117.8 60348.255 82100.243 56916.317
2000 1156 118.8 117.2 60750.876 82211.508 56942.108
2001 116.0 1169 118.1 61181.560 82349.925 56977.217
2002 116.3 115.5 112.2 61615.562 82488.495 57157.406
2003 1121 1169 111.0 62041.798 82534.176 57604.658
2004 110.3 116.6 106.9 62444.707 82516.260 58175.310
2005 1124 115.1 105.1 62818.185 82469.422 58607.043
2006 1119 114.2 103.3 63195457 82376.451 58941.499

Table 15.1: GDP per capita and population in 3 European countries (Source: Eurostat)

15.2 Named strings

For some purposes it may be useful to save a string (that is, a sequence of characters) as a named
variable that can be reused.

Some examples of the definition of a string variable are shown below.

string sl = "some stuff I want to save"
string s2 = getenv("HOME")
string s3 = s1 + 11

The first field after the type-name string is the name under which the string should be saved, then
comes an equals sign, then comes a specification of the string to be saved. This may take any of
the following forms:

a string literal (enclosed in double quotes); or

the name of an existing string variable; or

¢ a function that returns a string (see below); or

any of the above followed by + and an integer offset.

The role of the integer offset is to use a substring of the preceding element, starting at the given
character offset. An empty string is returned if the offset is greater than the length of the string in
question.

To add to the end of an existing string you can use the operator ~=, as in

string sl = "some stuff I want to
string sl ~= "save"

or you can use the ~ operator to join two or more strings, as in

"sweet"
"Home, " ~ sl ~ " home."

string sl
string s2

Note that when you define a string variable using a string literal, no characters are treated as
“special” (other than the double quotes that delimit the string). Specifically, the backslash is not
used as an escape character. So, for example,
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string s = "\"

is a valid assignment, producing a string that contains a single backslash character.

If you wish to use backslash-escapes to denote newlines, tabs, embedded double-quotes and so
on, use the sprintf function instead (see the printf command for an account of the escape-
characters). This function can also be used to produce a string variable whose definition involves
the values of other variables, as in

scalar x = 8
foo = sprintf("var%d", x) # produces "var8"

String variables and string substitution

String variables can be used in two ways in scripting: the name of the variable can be typed “as
is”, or it may be preceded by the “at” sign, @. In the first variant the named string is treated as a
variable in its own right, while the second calls for “string substitution”. The context determines
which of these variants is appropriate.

In the following contexts the names of string variables should be given in plain form (without the
“at” sign):

e When such a variable appears among the arguments to the printf command or sprintf
function.

e When such a variable is given as the argument to a function.

e On the right-hand side of a string assignment.

Here is an illustration of the use of a named string argument with printf:

? string vstr = "variance"
Generated string vstr

? printf "vstr: %12s\n", vstr
vstr: variance

String substitution can be used in contexts where a string variable is not acceptable as such. If
gretl encounters the symbol @ followed directly by the name of a string variable, this notation is
treated as a “macro”: the value of the variable is sustituted literally into the command line before
the regular parsing of the command is carried out.

One common use of string substitution is when you want to construct and use the name of a series
programatically. For example, suppose you want to create 10 random normal series named norml
to norm10. This can be accomplished as follows.

string sname = null
Toop i=1..10
sname = sprintf("norm%d", i)
series @sname = normal()
endloop

Note that plain sname could not be used in the second line within the loop: the effect would be
to attempt to overwrite the string variable named sname with a series of the same name. What
we want is for the current value of sname to be dumped directly into the command that defines a
series, and the “@” notation achieves that.

Another typical use of string substitution is when you want the options used with a particular
command to vary depending on some condition. For example,
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function void use_optstr (series y, list xlist, int verbose)
string optstr = verbose ? "" : "--simple-print"
ols y x1list @optstr

end function

open data4-1

Tist X = const sqft
use_optstr(price, X, 1)
use_optstr(price, X, 0)

When printing the value of a string variable using the print command, the plain variable name
should generally be used, as in

string s = "Just testing"
print s

The following variant is equivalent, though clumsy.

string s = "Just testing"
print "@s"

But note that this next variant does something quite different.

string s = "Just testing"
print @s

After string substitution, the print command reads
print Just testing

which attempts to print the values of two variables, Just and testing.

Built-in strings

Apart from any strings that the user may define, some string variables are defined by gretl itself.
These may be useful for people writing functions that include shell commands. The built-in strings
are as shown in Table 15.2.

gretldir the gretl installation directory
workdir  user’s current gretl working directory

dotdir the directory gretl uses for temporary files
gnuplot  path to, or name of, the gnuplot executable
tramo path to, or name of, the tramo executable
x12a path to, or name of, the x-12-arima executable

tramodir tramo data directory
x12adir x-12-arima data directory

Table 15.2: Built-in string variables

To access these as ordinary string variables, prepend a dollar sign (as in $dotdir); to use them in
string-substitution mode, prepend the at-sign (@dotdir).

Reading strings from the environment

It is possible to read into gretl’s named strings, values that are defined in the external environment.
To do this you use the function getenv, which takes the name of an environment variable as its
argument. For example:
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? string user = getenv("USER")

Generated string user

? string home = getenv("HOME")

Generated string home

? printf "%s’s home directory 1is %s\n", user, home
cottrell’s home directory is /home/cottrell

To check whether you got a non-empty value from a given call to getenv, you can use the function
strlen, which retrieves the length of the string, as in

? string temp = getenv("TEMP")
Generated string temp

? scalar x = strlen(temp)
Generated scalar x = 0

Capturing strings via the shell

If shell commands are enabled in gretl, you can capture the output from such commands using the
syntax

string stringname = $ (shellcommand)

That is, you enclose a shell command in parentheses, preceded by a dollar sign.

Reading from a file into a string
You can read the content of a file into a string variable using the syntax
string stringname = readfile(filename)
The filename field may be given as a string variable. For example
? fname = sprintf("%s/QNC.rts", $x12adir)
Generated string fname

? string foo = readfile(fname)
Generated string foo

More string functions

Gretl offers several functions for creating or manipulating strings. You can find these listed and
explained in the Function Reference under the category Strings.
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String-valued series

16.1 Introduction

Gretl’s support for data series with string values has gone through three phases:

1. No support: we simply rejected non-numerical values when reading data from file.

2. Numeric encoding only: we would read a string-valued series from a delimited text data file
(provided the series didn’t mix numerical values and strings) but the representation of the
data within gretl was purely numerical. We printed a “string table” showing the mapping
between the original strings and gretl’s encoding and it was up to the user to keep track of
this mapping.

3. Preservation of string values: the string table that we construct in reading a string-valued
series is now stored as a component of the dataset so it’s possible to display and manipulate
these values within gretl.

The third phase has now been in effect for several years, with a series of gradual refinements.
This chapter gives an account of the status quo. It explains how to create string-valued series and
describes the operations that are supported for such series.

16.2 Creating a string-valued series

This can be done in three ways: first, by reading such a series from a suitable source file; second,
by taking a suitable numerical series within gretl and adding string values using the stringify()
function; and third, by direct assignment to a series from an array of strings. In each case string
values will be preserved when such a series is saved in a gretl-native data file.

Reading string-valued series

The primary “suitable source” for string-valued series is a delimited text data file (but see sec-
tion16.5 below). Here’s a little example. The following is the content of a file named gc.csv:

city,year

"Bilbao", 2009
"Torun",2011
"OkTahoma City",2013
"Berl1lin",2015
"Athens",2017
"Naples",2019

and here’s a script:
open gc.csv --quiet
print --byobs

print city --byobs --numeric
printf "The third gret]l conference took place in %s.\n", city[3]
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The output from the script is:

? print --byobs

city year
1 BiTlbao 2009
2 Torun 2011
3 OkTahoma C.. 2013
4 Berlin 2015
5 Athens 2017
6 Naples 2019
? print city --byobs --numeric
city
1 1
2 2
3 3
4 4
5 5
6 6

The third gretl conference took place in Oklahoma City.
From this we can see a few things.

e By default the print command shows us the string values of the series city, and it han-
dles non-ASCII characters provided they’re in UTF-8 (but it doesn’t handle longer strings very
elegantly).

e The --numeric option to print exposes the numeric codes for a string-valued series.

e The syntax seriesnhame[obs] gives a string when a series is string-valued.

Suppose you want to access the numeric code for a particular string-valued observation: you can
get that by “casting” the series to a vector. Thus

printf "The code for '%s’ is %d.\n", city[3], {city}[3]
gives
The code for ’OkTahoma City’ is 3.

The numeric codes for string-valued series are always assigned thus: reading the data file row by
row, the first string value is assigned 1, the next distinct string value is assigned 2, and so on.

Assigning string values to an existing series
This is done via the stringify() function, which takes two arguments, the name of a series and
an array of strings. For this to work two conditions must be met:

1. The series must have only integer values and the smallest value must be 1 or greater.

2. The array of strings must have at least n distinct members, where n is the largest value found
in the series.
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The logic of these conditions is that we’re looking to create a mapping as described above, from
a 1-based sequence of integers to a set of strings. However, we're allowing for the possibility that
the series in question is an incomplete sample from an associated population. Suppose we have a
series that goes 2, 3, 5, 9, 10. This is taken to be a sample from a population that has at least 10
discrete values, 1, 2, ..., 10, and so requires at least 10 value-strings.

Here’s (a simplified version of) an example that one of the authors has had cause to use: deriving
US-style “letter grades” from a series containing percentage scores for students. Call the percentage
series x, and say we want to create a series with values A for x > 90, B for 80 < x < 90, and so on
down to F for x < 60. Then we can do:

series grade = 1 , the Teast value
grade += x >= 60
grade += x >= 70
grade += x >= 80
grade += x >= 90
stringify(grade, strsplit("F D C B A"))

H oH H H H*
>N O

The way the grade series is constructed is not the most compact, but it’s nice and explicit, and
easy to amend if one wants to adjust the threshold values. Note the use of strsplit() to create
an on-the-fly array of strings from a string literal; this is convenient when the array contains a
moderate number of elements with no embedded spaces. An alternative way to get the same result
is to define the array of strings via the defarray() function, as in

stringify(grade,defarray("F","D","C","B","A"))

The inverse operation of stringify() can be performed by the strvals() function: this retrieves
the array of string values from a series (or returns an empty array if the series is not string-valued).

Assigning from an array of strings

Given an array of strings whose length matches either the full length of the current dataset or
the length of the current sample range, you can assign directly to a series result. Here's a trivial
example:

nulldata 6

Str_ings S = defarr‘ay(llall’ Ilbll’ "C", |lb|l’ |lall, |ld|l)
series sx = S

print sx --byobs

And here’s a second example where we create a string-valued series using the “observation mark-
ers” from the current dataset, after grabbing them as an array via the markers command.

open data4-10
markers --to-array=S
series state = S
print state --byobs

16.3 Permitted operations

One question that arises with string-valued series is, what are you allowed to do with them and
what is banned? This is a debatable point, but here we set out the current state of things.

Setting values per observation

You can set particular values in a string-valued series either by string or numeric code. For example,
suppose (in relation to the example in section 16.2) that for some reason student number 31 with
a percentage score of 88 nonetheless merits an A grade. We could do
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grade[31] = "A"

or, if we’re confident about the mapping,
grade[31] = 5

Or to raise the student’s grade by one letter:
grade[31] += 1

What you're not allowed to do here is make a numerical adjustment that would put the value out
of bounds in relation to the set of string values. For example, if we tried grade[31] = 6 we’d get
an error.

On the other hand, you can implicitly extend the set of string values. This wouldn’t make sense for
the letter grades example but it might for, say, city names. Returning to the example in section 16.2
suppose we try

dataset addobs 1
year[7] = 2021
city[7] = "London?"

This will work: we're implicitly adding another member to the string table for city; the associated
numeric code will be the next available integer.!

Logical product of two string-valued series

The operator A can be used to produce what we might call the logical product of two string-valued
series, as in

series sv3 = svl A sv2

The result is another string-valued series with value s;.s; at observations where sv1 has value s;
and sv2 has value s;. For example, if at a given observation sv1 has value “A” and sv2 has value
“X”, then sv3 will have value “A.X”. The set of strings attached to the resulting series will include
all such string combinations even if they are not all represented in the given sample.

Assignment to an entire series

Other than the “assignment from array of strings” and “logical product” cases described above, this
is disallowed at present: you can’t execute an assignment with the name of a string-valued series
per se on the left-hand side. Put differently, you cannot overwrite an entire string-valued series at
once. While this is debatable, it’s the easiest way of ensuring that we never end up with a broken
mapping. It’s possible this restriction may be relaxed in future.

Besides assigning an out-of-bounds numerical value to a particular observation, this sort of assign-
ment is in fact the only operation that is banned for string-valued series.

Missing values

We support one exception to the general rule, never break the mapping between strings and nu-
meric codes for string-valued series: you can mark particular observations as missing. This is done
in the usual way, e.g.,

I Admittedly there is a downside to this feature: one may inadvertently add a new string value by mistyping a string
that’s already present.
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grade[31] = NA

Note, however, that on importing a string series from a delimited text file any non-blank strings (in-
cluding “NA”) will be interpreted as valid values; any missing values in such a file should therefore
be represented by blank cells.

Copying a string-valued series

If you make a copy of a string-valued series, as in
series foo = city

the string values are not copied over: you get a purely numerical series holding the codes of the
original series. But if you want a full copy with the string values that can easily be arranged:

series citycopy = city
stringify(citycopy, strvals(city))

String-valued series in other contexts

String-valued series can be used on the right-hand side of assignment statements at will, and in
that context their numerical values are taken. For example,

series y = sqrt(city)

will elicit no complaint and generate a numerical series 1, 1.41421, .... It’s up to the user to judge
whether this sort of thing makes any sense.

Similarly, it’s up to the user to decide if it makes sense to use a string-valued series “as is” in a
regression model, whether as regressand or regressor—again, the numerical values of the series
are taken. Often this will not make sense, but sometimes it may: the numerical values may by
design form an ordinal, or even a cardinal, scale (as in the “grade” example in section 16.2).

More likely, one would want to use dummify on a string-valued series before using it in statistical
modeling. In that context gretl’s series labels are suitably informative. For example, suppose we
have a series race with numerical values 1, 2 and 3 and associated strings “White”, “Black” and
“Other”. Then the hansl code

Tist D = dummify(race)
Tlabels

will show these labels:

Drace_2: dummy for race ’Black’
Drace_3: dummy for race = ’'Other’

Given such a series you can use string values in a sample restriction, as in
smp1 race == "Black" --restrict

(although race == 2 would also be acceptable).

There may be other contexts that we haven’t yet thought of where it would be good to have string
values displayed and/or accepted on input; suggestions are welcome.
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16.4 String-valued series and functions

User-defined hansl functions can deal with string-valued series, although there are a few points to
note.

If you supply such a series as an argument to a hansl function its string values will be accessible
within the function. One can test whether a given series arg is string-valued as follows:

if nelem(strvals(arg)) > 0
# yes

else
# no

endif

Now suppose one wanted to put something like the code that generated the grade series in sec-
tion 16.2 into a function. That can be done, but not in the form of a function that directly returns
the desired series—that is, something like

function series letter_grade (series x)
series grade
# define grade based on x and stringify it, as shown above
return grade

end function

Unfortunately the above will not work: the caller will get the grade series OK but it won’t be string-
valued. At first sight this may seem to be a bug but it's defensible as a consequence of the way
series work in gretl.

The point is that series have, so to speak, two grades of existence. They can exist as fully-fledged
members of a dataset, or they can have a fleeting existence as simply anonymous arrays of numbers
that are of the same length as dataset series. Consider the statement

series rootxl = sqrt(x+1)

On the right-hand side we have the “series” x+1, which is called into existence as part of a calcula-
tion but has no name and cannot have string values. Similarly, consider

series grade = letter_grade(x)

The return value from letter_grade() is likewise an anonymous array,’ incapable of holding
string values until it gets assigned to the named series grade. The solution is to define grade as a
series, at the level of the caller, before calling Tetter_grade(), as in

function void letter_grade (series x, series *grade)
# define grade based on x and stringify it
# this version will work!

end function

# caller

series grade
letter_grade(x, &grade)

As you’ll see from the account above, we don’t offer any very fancy facilities for string-valued
series. We'll read them from suitable sources and we’ll create them natively via stringify—and

2A proper named series, with string values, existed while the function was executing but it ceased to exist as soon as
the function was finished.
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we’ll try to ensure that they retain their integrity —but we don’t, for example, take the specification
of a string-valued series as a regressor as an implicit request to include the dummification of its
distinct values. Besides laziness, this reflects the fact that in gretl a string-valued series may be
usable “as is”, depending on how it’'s defined; you can use dummi fy if you need it.

16.5 Other import formats

In section 16.2 we illustrated the reading of string-valued series with reference to a delimited text
data file. Gretl can also handle several other sources of string-valued data, including the spread-
sheet formats x1s, xT1sx, gnumeric and ods and (to a degree) the formats of Stata, SAS and SPSS.

Stata files

Stata supports two relevant sorts of variables: (1) those that are of “string type” and (2) variables
of one or other numeric type that have “value labels” defined. Neither of these is exactly equivalent
to what we call a “string-valued series” in gretl.

Stata variables of string type have no numeric representation; their values are literally strings, and
that’s all. Stata’s numeric variables with value labels do not have to be integer-valued and their
least value does not have to be 1; however, you can’t define a label for a value that is not an integer.
Thus in Stata you can have a series that comprises both integer and non-integer values, but only
the integer values can be labeled.3

This means that on import to gretl we can readily handle variables of string type from Stata’s dta
files. We give them a 1-based numeric encoding; this is arbitrary but does not conflict with any
information in the dta file. On the other hand, in general we’re not able to handle Stata’s numeric
variables with value labels; currently we report the value labels to the user but do not attempt to
store them in the gretl dataset. We could check such variables and import them as string-valued
series if they satisfy the criteria stated in section 16.2 but we don’t at present.

SAS and SPSS files

Gretl is able to read and preserve string values associated with variables from SAS “export” (xpt)
files, and also from SPSS sav files. Such variables seem to be on the same pattern as Stata variables
of string type.

3Verified in Stata 12.
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Matrix manipulation

Together with the other two basic types of data (series and scalars), gretl offers a quite compre-
hensive array of matrix methods. This chapter illustrates the peculiarities of matrix syntax and
discusses briefly some of the more advanced matrix functions. For a full listing of matrix functions
and a comprehensive account of their syntax, please refer to the Gretl Command Reference.

In this chapter we’re concerned with real matrices; most of the points made here also apply to
complex matrices but see the following chapter for additional specifics on the complex case.

17.1 Creating matrices
Matrices can be created using any of these methods:
1. By direct specification of the scalar values that compose the matrix— either in numerical form,
or by reference to pre-existing scalar variables, or using computed values.
2. By providing a list of data series.
3. By providing a named list of series.
4. Via a suitable expression that references existing matrices and/or scalars, or via some special

functions.

To specify a matrix directly in terms of scalars, the syntax is, for example:
matrix A = {1, 2, 3 ; 4, 5, 6}

The matrix is defined by rows; the elements on each row are separated by commas and the rows
are separated by semi-colons. The whole expression must be wrapped in braces. Spaces within the
braces are not significant. The above expression defines a 2 x 3 matrix. Each element should be a
numerical value, the name of a scalar variable, or an expression that evaluates to a scalar. Directly
after the closing brace you can append a single quote (’) to obtain the transpose.

To specify a matrix in terms of data series the syntax is, for example,
matrix A = {x1, x2, x3}

where the names of the variables are separated by commas. Besides names of existing variables,
you can use expressions that evaluate to a series. For example, given a series x you could do

matrix A = {x, xA2}

Each variable occupies a column (and there can only be one variable per column). You cannot use
the semicolon as a row separator in this case: if you want the series arranged in rows, append the
transpose symbol. The range of data values included in the matrix depends on the current setting
of the sample range.

Instead of giving an explicit list of variables, you may instead provide the name of a saved list (see
Chapter 15), as in

136
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Tist x1list = x1 x2 x3
matrix A = {xTist}

When you provide a named list, the data series are by default placed in columns, as is natural in an
econometric context: if you want them in rows, append the transpose symbol.

As a special case of constructing a matrix from a list of variables, you can say
matrix A = {dataset}

This builds a matrix using all the series in the current dataset, apart from the constant (variable 0).
When this dummy list is used, it must be the sole element in the matrix definition {...}. You can,
however, create a matrix that includes the constant along with all other variables using horizontal
concatenation (see below), as in

matrix A = {const}~{dataset}

By default, when you build a matrix from series that include missing values the data rows that
contain NAs are skipped. But you can modify this behavior via the command set skip_missing
off. In that case NAs are converted to NaN (“Not a Number”). In the IEEE floating-point stan-
dard, arithmetic operations involving NaN always produce NaN. Alternatively, you can take greater
control over the observations (data rows) that are included in the matrix using the “set” variable
matrix_mask, as in

set matrix_mask msk

where msk is the name of a series. Subsequent commands that form matrices from series or lists will
include only observations for which msk has non-zero (and non-missing) values. You can remove
this mask via the command set matrix_mask null.

= Names of matrices must satisfy the same requirements as names of gretl variables in general: the name
can be no longer than 31 characters, must start with a letter, and must be composed of nothing but letters,
numbers and the underscore character.

17.2 Empty matrices
The syntax

matrix A = {}

creates an empty matrix—a matrix with zero rows and zero columns.

The main purpose of the concept of an empty matrix is to enable the user to define a starting point
for subsequent concatenation operations. For instance, if X is an already defined matrix of any size,
the commands

matrix A
matrix B

{}
A ~ X

result in a matrix B identical to X.

From an algebraic point of view, one can make sense of the idea of an empty matrix in terms of
vector spaces: if a matrix is an ordered set of vectors, then A={} is the empty set. As a consequence,
operations involving addition and multiplications don’t have any clear meaning (arguably, they have
none at all), but operations involving the cardinality of this set (that is, the dimension of the space
spanned by A) are meaningful.
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Function Return value Function Return value
A’, transp(A) A rows (A) 0
cols(A) 0 rank (A) 0
det(A) NA Tdet(A) NA
tr(A) NA onenorm(A) NA
infnorm(A) NA rcond(A) NA

Table 17.1: Valid functions on an empty matrix, A

Legal operations on empty matrices are listed in Table 17.1. (All other matrix operations gener-
ate an error when an empty matrix is given as an argument.) In line with the above interpreta-
tion, some matrix functions return an empty matrix under certain conditions: the functions diag,
vec, vech, unvech when the arguments is an empty matrix; the functions I, ones, zeros,
mnormal, muniform when one or more of the arguments is 0; and the function null1space when
its argument has full column rank.

17.3 Selecting submatrices

You can select submatrices of a given matrix using the syntax
A[rows,cols]

where rows can take any of these forms:

1. empty selects all rows

2. asingle integer selects the single specified row
3. two integers separated by a colon selects a range of rows

4. the name of a matrix selects the specified rows

With regard to option 2, the integer value can be given numerically, as the name of an existing
scalar variable, or as an expression that evaluates to a scalar. With option 4, the index matrix given
in the rows field must be either p x 1 or 1 X p, and should contain integer values in the range 1 to
n, where n is the number of rows in the matrix from which the selection is to be made.

The cols specification works in the same way, mutatis mutandis. Here are some examples.

matrix B = A[1,]
matrix B = A[2:3,3:5]
matrix B = A[2,2]
matrix idx = {1, 2, 6}
matrix B = A[idx,]

The first example selects row 1 from matrix A; the second selects a 2 x 3 submatrix; the third selects
a scalar; and the fourth selects rows 1, 2, and 6 from matrix A.

If the matrix in question is n x 1 or 1 x m, it is OK to give just one index specifier and omit the
comma. For example, A[2] selects the second element of A if A is a vector. Otherwise the comma
is mandatory.

In addition there are some predefined index specifications, represented by the keywords diag,
Tower, upper, real, imag and end. With the exception of end, these keywords imply specific row
and column selections, and therefore cannot be combined with any additional, comma-separated
term.

e The diag specification selects the principal diagonal of a matrix.



Chapter 17. Matrix manipulation 139
e Tower and upper select, respectively, the elements of a matrix below and those above the
principal diagonal.
¢ real and imag are specific to complex matrices and are described in chapter 18.
¢ end selects the last element in a given row or column. It can be employed in arithmetical

expressions, so for example end-1 accesses the second-last element in a row or column.

You can use submatrix selections on either the right-hand side of a matrix-generating formula or
the left. Here is an example of use of a selection on the right, to extract a 2 X 2 submatrix B from a
3 x 3 matrix A, then the lower triangle of A:

matrix A = {1, 2, 3; 4, 5, 6; 7, 8, 9}
matrix B = A[1:2,2:3]
matrix C = A[Tower]

And here are examples of selection on the left. The second line below writes a 2 x 2 identity matrix
into the bottom right corner of the 3 x 3 matrix A. The fourth line replaces the diagonal of A with
1s.

matrix A = {1, 2, 3; 4, 5, 6; 7, 8, 9}
matrix A[2:3,2:3] = I(2)

matrix d = {1, 1, 1}

matrix A[diag] = d

When the Tower and upper selections are used on the right, they yield a vector holding the elements
in their scope. The ordering of the elements is column-major in both cases, as illustrated below for
the 4 X 4 case.

w N =
|92 BT N ST
QAL W N
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This means that Tower and upper do not produce the same result for symmetric matrices bigger
than 3 x 3, which may seem unfortunate, but it gives the user a degree of flexibility in respect of the
ordering of the elements. Suppose you have a non-symmetric matrix M and you'd like to extract
the infradiagonal elements in row-major order: (M) [upper] will do the job.

When Tower and upper are used on the left, the replacement must be either (a) a vector of length
equal to the number of elements in the selection or (b) a scalar value. In case (a) the elements of
the target matrix are filled in column-major order; in case (b) they are all set using the scalar.

One possible use of these tools is taking (say) a lower triangular matrix and rendering it symmetric
by copying the elements from beneath the diagonal to above. The way to get this right (assuming
you have a lower triangular matrix L) is

LLupper] = (L’)[upper] # note: not L[upper] = L[lower]

17.4 Deleting rows or columns

A variant of submatrix notation is available for convenience in dropping specified rows and/or
columns from a matrix, namely giving negative values for the indices. Here is a simple example,

matrix A {1, 2, 3; 4, 5, 6; 7, 8, 9}
matrix B = A[-2,-3]



Chapter 17. Matrix manipulation 140

which creates B as a 2 X 2 matrix which drops row 2 and column 3 from A. Negative indices can also
be given in the form of an index vector:

matrix rdrop = {-1,-3,-5}
matrix B = A[rdrop,]

In this case B is formed by dropping rows 1, 3 and 5 from A (which must have at least 5 rows), but
retaining the column dimension of A.

There are two limitations on the use of negative indices. First, the from: to range syntax described
in the previous section is not available, but you can use the seq function to achieve an equivalent
effect, as in

matrix A = muniform(l, 10)
matrix B = A[,-seq(3,7)]

where B drops columns 3 to 7 from A. Second, use of negative indices is valid only on the right-hand
side of a matrix calculation; there is no “negative index” equivalent of assignment to a submatrix,
as in

A[1:3,] = ones(3, cols(A))

17.5 Matrix operators

The following binary operators are available for matrices:

+ addition

- subtraction

ordinary matrix multiplication
pre-multiplication by transpose
\  matrix “left division” (see below)
/ matrix “right division” (see below)
~ column-wise concatenation

| row-wise concatenation
Kronecker product

== test for equality

I=test for inequality

In addition, the following operators (“dot” operators) apply on an element-by-element basis:
- N = > i< >= L= L=

Here are explanations of the less obvious cases.

For matrix addition and subtraction, in general the two matrices have to be of the same dimensions
but an exception to this rule is granted if one of the operands is a 1 X 1 matrix or scalar. The scalar
is implicitly promoted to the status of a matrix of the correct dimensions, all of whose elements
are equal to the given scalar value. For example, if A is an m X n matrix and k a scalar, then the
commands

I
>
+
~

matrix C
matrix D =

|
>

1
~
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both produce m x n matrices, with elements c;; = a;; + k and d;j = a;j — k respectively.

By “pre-multiplication by transpose” we mean, for example, that
matrix C = X'Y

produces the product of X-transpose and Y. In effect, the expression X’Y is shorthand for X’ *Y,
which is also valid syntax. In the special case X = Y, however, the two are not exactly equivalent.
The former expression uses a specialized algorithm with two advantages: it is more efficient com-
putationally, and ensures that the result is free of machine precision artifacts that may render it
numerically non-symmetric. This, however, is unlikely to be an issue unless your X matrix is rather
large (at least several hundreds rows/columns).

In matrix “left division”, the statement
matrix X = A \ B

is interpreted as a request to find the matrix X that solves AX = B. If A is a square matrix, this is
in principle equivalent to A~!'B, which fails if A is singular; the numerical method employed here
is the LU decomposition. If A is a T X k matrix with T > k, then X is the least-squares solution,
X = (A’A)"'A’B, which fails if A’A is singular; the numerical method employed here is the QR
decomposition. Otherwise, the operation necessarily fails.

For matrix “right division”, as in X = A / B, X is the matrix that solves XB = A, in principle
equivalent to AB~L.

In “dot” operations a binary operation is applied element by element; the result of this operation
is obvious if the matrices are of the same size. However, there are several other cases where such
operators may be applied. For example, if we write

matrix C = A .- B

then the result C depends on the dimensions of A and B. Let A be an m X n matrix and let B be
p X q; the result is as follows:

Case Result

Dimensions match (m = p and n = q) Cij = aij — bij
A is a column vector; rows match (m = p; n = 1) ¢ij = ai — bij
B is a column vector; rows match (m = p; g = 1) cij = aij — b;
A is a row vector; columns match (im = 1; n = q) cij = aj — bij
B is a row vector; columns match (m = p; q = 1) cij = aij —b;j

Ais a column vector; Bisarow vector(n=1,p=1) c¢ij=a;—bj
A is arow vector; B is a column vector((imm =1; g =1) c¢ij=aj—b;
Aisascalar(m=1andn =1) cij = a— bjj
Bisascalar(p =1land g =1) cij=aij—b

If none of the above conditions are satisfied the result is undefined and an error is flagged.

Note that this convention makes it unnecessary, in most cases, to use diagonal matrices to perform
transformations by means of ordinary matrix multiplication: if Y = XV, where V is diagonal, it is
computationally much more convenient to obtain Y via the instruction

matrix Y = X .* v

where v is a row vector containing the diagonal of V.

In column-wise concatenation of an m xn matrix A and an m X p matrix B, the resultis an mx (n+p)
matrix. That is,
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matrix C = A ~ B

produces C = [ A B ]

Row-wise concatenation of an m X n matrix A and an p X n matrix B produces an (m + p) X n
matrix. That is,

matrix C = A | B

roduces C = A
p =l g I

17.6 Matrix-scalar operators

For matrix A and scalar k, the operators shown in Table 17.2 are available. (Addition and subtrac-
tion were discussed in section 17.5 but we include them in the table for completeness.) In addition,
for square A and scalar x, B = AAx produces a matrix B which is A raised to the power x, but only
if either of two conditions are satisfied. First, if x is a non-negative integer then Golub and Van
Loan’s “Binary Powering” Algorithm 11.2.2 is used —see Golub and Van Loan (1996)—and A can
then be a generic square matrix. Second, if A is positive semidefinite the power is computed via its
eigen-decomposition and x can be a real number, subject to the constraint that x can be negative
only if A is invertible.

Expression Effect

matrix bij = kaij

bij = (/‘Lij/k

bij = k/aij

j = aij + k

bij = aij -k

bij = k—aij

aij modulo k

matrix
matrix
matrix
matrix

+ NN
~ > X~ X~ r» X~ X

Ny

<

matrix
matrix

o~ B v~ R v~ B v~ B v~ B v~ B v~
Il
> X~ > > X > >

Ny
<
Il

Table 17.2: Matrix-scalar operators

17.7 Matrix functions

Most of the functions available for scalars and series also apply to matrices on an element-by-
element basis. This is the case for 1og, exp, sqrt, sin and many others. For example, if a matrix A
is already defined, then

matrix B = sqrt(A)

generates a matrix such that b;j = ./a;;. All such functions require a single matrix as argument, or
an expression which evaluates to a single matrix.!

In this section, we review some aspects of functions that apply specifically to matrices. A full
account of each function is available in the Gretl Command Reference.

INote that to find the “matrix square root” you need the cholesky function (see below). And since the exp function
computes the exponential element by element, it does not return the matrix exponential unless the matrix is diagonal.
To get the matrix exponential, use mexp.
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Matrix manipulation

chameset cols diag diagcat halton I
Tower mlag mnormal mrandgen mreverse mshape
msortby  msplitby muniform ones rnameset rows
selifc selifr seq trimr unvech upper
vec vech zeros

Matrix algebra
cholesky cnumber  conv2d det eigen eigengen
eigensym eigsolve fft fft2 ffti ginv
hdprod infnorm inv invpd Tldet Lsolve
mexp mlog nullspace onenorm psdroot gform
grdecomp rank rcond svd toepsolv tr
transp

Statistics/transformations
aggregate bkw corr cov ecdf fcstats
ghk gini imaxc imaxr iminc iminr
kpsscrit maxc maxr mcorr mcov mcovg
meanc meanr minc minr mols mpoTls
mris mxtab normtest npcorr princomp prodc
prodr quadtable quantile ranking resample sdc
sumc sumr uniq values

Numerical methods
BFGSmax BFGScmax fdjac fzero GSSmax NMmax
NRmax numhess simann

Table 17.3: Matrix functions by category
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Matrix reshaping

In addition to the methods discussed in sections 17.1 and 17.3, a matrix can also be created by
re-arranging the elements of a pre-existing matrix. This is accomplished via the mshape function.
It takes three arguments: the input matrix, A, and the rows and columns of the target matrix, +
and c respectively. Elements are read from A and written to the target in column-major order. If A
contains fewer elements than n = v X ¢, they are repeated cyclically; if A has more elements, only
the first n are used.

For example:

matrix a = mnormal(2,3)

rjatr'ix b = mshape(a,3,1)
rbnatrix b = mshape(a,5,2)
b

produces
? a

1.2323 0.99714 -0.39078
0.54363 0.43928 -0.48467

? matrix b = mshape(a,3,1)
Generated matrix b

? b
b
1.2323
0.54363
0.99714

? matrix b = mshape(a,5,2)
Replaced matrix b

? b
b
1.2323 -0.48467
0.54363 1.2323
0.99714 0.54363
0.43928 0.99714
-0.39078 0.43928

Multiple returns and the null keyword

Some functions take one or more matrices as arguments and compute one or more matrices; these
are:

eigensym Eigen-analysis of symmetric matrix

eigen Eigen-analysis of general matrix
mols Matrix OLS

grdecomp QR decomposition

svd Singular value decomposition (SVD)

The general rule is: the “main” result of the function is always returned as the result proper.
Auxiliary returns, if needed, are retrieved using pre-existing matrices, which are passed to the
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function as pointers (see 14.4). If such values are not needed, the pointer may be substituted with
the keyword nulT.

The syntax for qrdecomp and eigensym is of the form
matrix B = func(A, &OC)

The first argument, A, represents the input data, that is, the matrix whose decomposition or analysis
is required. The second argument must be either the name of an existing matrix preceded by & (to
indicate the “address” of the matrix in question), in which case an auxiliary result is written to that
matrix, or the keyword nulT, in which case the auxiliary result is not produced.

In case a non-null second argument is given, the specified matrix will be over-written with the
auxiliary result. (It is not required that the existing matrix be of the right dimensions to receive the
result.)

The function eigensym computes the eigenvalues, and optionally the right eigenvectors, of a sym-
metric n X n matrix. The eigenvalues are returned directly in a column vector of length n; if the
eigenvectors are required, they are returned in an n X n matrix. For example:

matrix V {3}
matrix E eigensym(M, &V)
matrix E = eigensym(M, null)

In the first case E holds the eigenvalues of M and V holds the eigenvectors. In the second, E holds
the eigenvalues but the eigenvectors are not computed.

The function eigen computes the eigenvalues, and optionally the right and/or left eigenvectors,
of a general n x n matrix.> Following the input matrix argument there are two slots for matrix-
addresses, the first to retrieve the right eigenvectors and the second for the left. Calls to this
function should therefore conform to one of the following patterns.

# get the eigenvalues only
matrix E = eigen(M)

# get the right eigenvectors as well
matrix V = {}
matrix E = eigen(M, &V)

# get both sets of eigenvectors
matrix V = {}

matrix W = {}

matrix E eigen(M, &V, &W)

# get the left eigenvectors but not the right
matrix W = {}
matrix E = eigen(M, null, &W)

The eigenvalues are returned directly in a complex n-vector. If the eigenvectors are wanted they
are returned in a n X n complex matrix.

The qrdecomp function computes the QR decomposition of an m X n matrix A: A = QR, where Q
is an m X n orthogonal matrix and R is an n X n upper triangular matrix. The matrix Q is returned
directly, while R can be retrieved via the second argument. Here are two examples:

matrix R
matrix Q = qrdecomp(M, &R)
matrix Q = qrdecomp(M, null)

2The “legacy” function eigengen used to be the way to do this prior to gretl 2019d.
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In the first example, the triangular R is saved as R; in the second, R is discarded. The first line
above shows an example of a “simple declaration” of a matrix: R is declared to be a matrix variable
but is not given any explicit value. In this case the variable is initialized as a 1 X 1 matrix whose
single element equals zero.

The syntax for svd is
matrix B = func(A, &C, &D)

The function svd computes all or part of the singular value decomposition of the real m x n matrix
A. Let k = min(m, n). The decomposition is

A=U3V'

where U is an m X k orthogonal matrix, 2 is an k X k diagonal matrix, and V is an k X n orthogonal
matrix.> The diagonal elements of = are the singular values of A; they are real and non-negative,
and are returned in descending order. The first k columns of U and V are the left and right singular
vectors of A.

The svd function returns the singular values, in a vector of length k. The left and/or right singu-
lar vectors may be obtained by supplying non-null values for the second and/or third arguments
respectively. For example:

matrix s = svd(A, &U, &V)
matrix s = svd(A, null, null)
matrix s = svd(A, null, &Y)

In the first case both sets of singular vectors are obtained, in the second case only the singular
values are obtained; and in the third, the right singular vectors are obtained but U is not computed.
Please note: when the third argument is non-null, it is actually V’ that is provided. To reconstitute
the original matrix from its SVD, one can do:

matrix s svd(A, &U, &V)
matrix B = (U.*s)*V

Finally, the syntax for moTs is
matrix B = mols(Y, X, &U)

This function returns the OLS estimates obtained by regressing the T x n matrix Y on the T x k
matrix X, that is, a k x n matrix holding (X’X)1X’Y. The Cholesky decomposition is used. The
matrix U, if not nu11, is used to store the residuals.

Reading and writing matrices from/to text files

The two functions mread and mwrite can be used for basic matrix input/output. This can be useful
to enable gretl to exchange data with other programs.

The mread function accepts one string parameter: the name of the (plain text) file from which the
matrix is to be read. The file in question may start with any number of comment lines, defined
as lines that start with the hash mark, “#”; such lines are ignored. Beyond that, the content must
conform to the following rules:

1. The first non-comment line must contain two integers, separated by a space or a tab, indicat-
ing the number of rows and columns, respectively.

3This is not the only definition of the SVD: some writers define U as m x m, = as m X n (with k non-zero diagonal
elements) and V as n X n.
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2. The columns must be separated by spaces or tab characters.

3. The decimal separator must be the dot “.” character.

Should an error occur (such as the file being badly formatted or inaccessible), an empty matrix (see
section 17.2) is returned.

The complementary function mwrite produces text files formatted as described above. The column
separator is the tab character, so import into spreadsheets should be straightforward. Usage is
illustrated in example 17.1. Matrices stored via the mwrite command can be easily read by other
programs; the following table summarizes the appropriate commands for reading a matrix A from
a file called a.mat in some widely-used programs.* Note that the Python example requires that the
numpy module is loaded.

Program Sample code
GAUSS tmp[] = Toad a.mat;
A = reshape(tmp[3:rows(tmp)],tmp[1],tmp[2]);
Octave fd = fopen("a.mat");
[r,c] = fscanf(fd, "%d %d", "C");
A = reshape(fscanf(fd, "%g", r*c),c,r)’;
fclose(fd);
Ox decl A = Toadmat("a.mat");
R A <- as.matrix(read.table("a.mat", skip=1))
Python A = numpy.loadtxt(’a.mat’, skiprows=1)
Julia A readdIm("a.mat", skipstart=1)

Optionally, the mwrite and mread functions can use gzip compression: this is invoked if the name
of the matrix file has the suffix “.gz.” In this case the elements of the matrix are written in a single
column. Note, however, that compression should not be applied when writing matrices for reading
by third-party software unless you are sure that the software can handle compressed data.

17.8 Matrix accessors

In addition to the matrix functions discussed above, various “accessor” strings allow you to create
copies of internal matrices associated with models previously estimated. These are set out in
Table 17.4.

Many of the accessors in Table 17.4 behave somewhat differently depending on the sort of model
that is referenced, as follows:

¢ Single-equation models: $sigma gets a scalar (the standard error of the regression); $coeff
and $stderr get column vectors; $uhat and $yhat get series.

e System estimators: $sigma gets the cross-equation residual covariance matrix; $uhat and
$yhat get matrices with one column per equation. The format of $coeff and $stderr de-
pends on the nature of the system: for VARs and VECMs (where the matrix of regressors is
the same for all equations) these return matrices with one column per equation, but for other
system estimators they return a big column vector.

¢ VARs and VECMs: $vcv is not available, but X’ X! (where X is the common matrix of regres-
sors) is available as $xtxinv, such that for VARs and VECMs (without restrictions on «) a vcv
equivalent can be easily and efficiently constructed as $sigma ** $xtxinv.

4Matlab users may find the Octave example helpful, since the two programs are mostly compatible with one another.
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Listing 17.1: Matrix input/output via text files [Download v]

nulldata 64
scalar n = 3
string f1 "a.csv"
string f2 = "b.csv"

matrix a = mnormal(n,n)
matrix b inv(a)

err = mwrite(a, f1l)

if err 1= 0

fprintf "Failed to write %s\n", fl
else

err = mwrite(b, f2)
endif

if err 1= 0
fprintf "Failed to write %s\n", f2
else
c = mread(f1l)
d = mread(f2)
a = c*d
printf "The following matrix should be an identity matrix\n
print a
endif

n

$coeff  matrix of estimated coefficients
$compan companion matrix (after VAR or VECM estimation)
$jalpha matrix & (loadings) from Johansen’s procedure

$jbeta  matrix § (cointegration vectors) from Johansen’s procedure
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$jvbeta covariance matrix for the unrestricted elements of S from Johansen’s procedure

$rho autoregressive coefficients for error process
$sigma  residual covariance matrix
$stderr matrix of estimated standard errors

$uhat matrix of residuals

$vev covariance matrix of parameter estimates

$vma VMA matrices in stacked form (see section 32.2)
$yhat matrix of fitted values

Table 17.4: Matrix accessors for model data


http://gretl.sourceforge.net/guidefiles/example-17.1.inp
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If the accessors are given without any prefix, they retrieve results from the last model estimated, if
any. Alternatively, they may be prefixed with the name of a saved model plus a period (.), in which
case they retrieve results from the specified model. Here are some examples:

matrix u = $uhat
matrix b = ml.$coeff
matrix v2 = ml.$vcv[1l:2,1:2]

The first command grabs the residuals from the last model; the second grabs the coefficient vector
from model m1; and the third (which uses the mechanism of submatrix selection described above)
grabs a portion of the covariance matrix from model m1.

If the model in question a VAR or VECM (only) $compan and $vma return the companion matrix and
the VMA matrices in stacked form, respectively (see section 32.2 for details). After a vector error
correction model is estimated via Johansen’s procedure, the matrices $jalpha and $jbeta are also
available. These have a number of columns equal to the chosen cointegration rank; therefore, the
product

matrix Pi = $jalpha * $jbeta’

returns the reduced-rank estimate of A(1). Since S is automatically identified via the Phillips nor-
malization (see section 33.5), its unrestricted elements do have a proper covariance matrix, which
can be retrieved through the $jvbeta accessor.

17.9 Namespace issues

Matrices share a common namespace with data series and scalar variables. In other words, no two
objects of any of these types can have the same name. It is an error to attempt to change the type
of an existing variable, for example:

scalar x = 3
matrix X ones(2,2) # wrong!

It is possible, however, to delete or rename an existing variable then reuse the name for a variable
of a different type:

scalar x = 3
delete x
matrix x = ones(2,2) # OK

17.10 Creating a data series from a matrix

Section 17.1 above describes how to create a matrix from a data series or set of series. You may
sometimes wish to go in the opposite direction, that is, to copy values from a matrix into a regular
data series. The syntax for this operation is

series sname = mspec

where sname is the name of the series to create and mspec is the name of the matrix to copy from,
possibly followed by a matrix selection expression. Here are two examples.

series s = X
series ul = U[,1]

It is assumed that x and U are pre-existing matrices. In the second example the series ul is formed
from the first column of the matrix U.
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For this operation to work, the matrix (or matrix selection) must be a vector with length equal to
either the full length of the current dataset, n, or the length of the current sample range, n’. If
n’ < n then only n’ elements are drawn from the matrix; if the matrix or selection comprises n
elements, the n’ values starting at element t; are used, where t; represents the starting observation
of the sample range. Any values in the series that are not assigned from the matrix are set to the
missing code.

17.11 Matrices and lists

To facilitate the manipulation of named lists of variables (see Chapter 15), it is possible to convert
between matrices and lists. In section 17.1 above we mentioned the facility for creating a matrix
from a list of variables, as in

matrix M = { Tistname }

That formulation, with the name of the list enclosed in braces, builds a matrix whose columns hold
the variables referenced in the list. What we are now describing is a different matter: if we say

matrix M = listname

(without the braces), we get a row vector whose elements are the ID numbers of the variables in the
list. This special case of matrix generation cannot be embedded in a compound expression. The
syntax must be as shown above, namely simple assignment of a list to a matrix.

To go in the other direction, you can include a matrix on the right-hand side of an expression that
defines a list, as in

Tist X1 =M

where M is a matrix. The matrix must be suitable for conversion; that is, it must be a row or column
vector containing non-negative integer values, none of which exceeds the highest ID number of a
series in the current dataset.

Listing 17.2 illustrates the use of this sort of conversion to “normalize” a list, moving the constant
(variable 0) to first position.

17.12 Deleting a matrix

To delete a matrix, just write
delete M

where M is the name of the matrix to be deleted.

17.13 Printing a matrix

To print a matrix, the easiest way is to give the name of the matrix in question on a line by itself,
which is equivalent to using the print command:

matrix M = mnormal(100,2)
M
print M

You can get finer control on the formatting of output by using the printf command, as illustrated
in the interactive session below:
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Listing 17.2: Manipulating a list [Download v]

function void normalize_list (matrix *x)
# If the matrix (representing a list) contains var 0,
# but not in first position, move it to first position
if (x[1] !'= 0)
scalar k = cols(x)
Toop for (i=2; i<=k; i++)
if (x[i1] == 0)

x[1] = x[1]
x[1] =0
break
endif
endTloop

endif
end function

open data9-7

Tist X1 =2 3 0 4
matrix x = X]
normalize_Tist(&x)
Tist X1 = x

Tist X1 print

? matrix Id = I(2)
matrix Id = I(2)
Generated matrix Id
? print Id
print Id
Id (2 x 2)

1 0
0 1

? printf "%10.3f", Id
1.000 0.000
0.000 1.000

For presentation purposes you may wish to give titles to the columns of a matrix. For this you can
use the cnameset function: the first argument is a matrix and the second is either a named list of
variables, whose names will be used as headings, or a string that contains as many space-separated
substrings as the matrix has columns. For example,

? matrix M = mnormal(3,3)
? cnameset(M, "foo bar baz'")

? print M
M (3 x 3)
foo bar baz
1.7102 -0.76072 0.089406
-0.99780 -1.9003 -0.25123

-0.91762 -0.39237 -1.6114
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17.14 Example: OLS using matrices

Listing 17.3 shows how matrix methods can be used to replicate gretl’s built-in OLS functionality.

Listing 17.3: OLS via matrix methods [Download V]|

open data4-1

matrix X = { const, sqft }

matrix y = { price }

matrix b = invpd(X’X) * X’y

print "estimated coefficient vector”
b

matrix u =y - X*b

scalar SSR = u’u

scalar s2 = SSR / (rows(X) - rows(b))
matrix V = s2 * inv(X’X)

\

matrix se = sqrt(diag(V))

print "estimated standard errors"

se

# compare with built-in function

ols price const sqft --vcv


http://gretl.sourceforge.net/guidefiles/example-17.3.inp
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Complex matrices

18.1 Introduction

Native support for complex matrices was added to gretl in version 2019d. Not all of hansl’s matrix
functions accept complex input, but we have enabled a sizable subset of these functions which
should suffice for most econometric purposes.

Complex numbers are not used in most areas of econometrics, but there are a few notable ex-
ceptions: among these, complex numbers allow for an elegant treatment of univariate spectral
analysis of time series, and become indispensable if you consider multivariate spectral analysis —
see for example Shumway and Stoffer (2017). A more recent example is the numerical solution of
linear models with rational expectations, which are widely used in modern macroeconomics, for
which the complex Schur factorization has become the tool of choice (Klein, 2000).

A first point to note is that complex values are treated as a special case of the hansl matrix type;
there’s no complex type as such. Complex scalars fall under the matrix type as 1 X 1 matrices; the
hansl scalar type is only for real values (as is the series type). A 1 X 1 complex matrix should do
any work you might require of a complex scalar.

Before we proceed to the details of complex matrices in gretl, here’s a brief reminder of the revelant
concepts and notation. Complex numbers are pairs of the form a + b i where a and b are real
numbers and i is defined as the square root of —1: a is the real part and b the imaginary part.
One can specify a complex number either via a and b or in “polar” form. The latter pertains to the
complex plane, which has the real component on the horizontal axis and the imaginary component
on the vertical. The polar representation of a complex number is composed of the length » of
the ray from the origin to the point in question and the angle 0 subtended between the positive
real axis and this ray, measured counter-clockwise in radians. In polar form the complex number
z = a + bi can be written as
z=1z/(cos@ +isin@) = |z|e™

where |z| = v = Va2 + b? and 9 = tan"!(b/a). The quantity |z| is known as the modulus of z,
and 0 as its complex “argument” (or sometimes “phase”). The notation Z is used for the complex
conjugateof z:if z=a + bi,thenz =a - bi.

18.2 Creating a complex matrix

The unique explicit constructor for complex matrices is the complex() function. This takes two
arguments, giving the real and imaginary parts respectively, and sticks them together, as in

C = complex(A, B)
Four cases are supported, as follows.

e A and B are both m X n real matrices Then C is an m X n complex matrix such that cx; =
agj + bkj i.

e A and B are both scalars: Cis a 1 x 1 complex matrix such thatc =a + b i.

e Ais an m X n real matrix and B is a scalar: Cis an m x n matrix such that cxj = ax; + b i.

153
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e Ais ascalar and B is an m X n real matrix: C is an m X n matrix such that cxj = a + by;j i.

In addition, complex matrices may naturally arise as the result of certain computations.

With both real and complex matrices in circulation, one may wish to determine whether a particular
matrix is complex. The function iscomplex() can tell you. Passed an identifier, it returns 1 if it
names a complex matrix, O if it names a real matrix, or NA otherwise.

Note, however, that the iscomplex () function only tells you if a certain matrix is endowed with an
imaginary part, which may be zero. The following code snippet should clarify the point:

matrix z = complex(1l,0)
scalar a iscomplex(z)
scalar b z[imag] == 0
printf "a = %g, b = %g\n", a, b

The code above gives

The test a is non-zero (or “true”) because the matrix z is defined as complex, but b, which tests
for an all-zero imaginary part of z, is also true. In mathematical terms, then, z is effectively a real
matrix.

18.3 Indexation

Indexation of complex matrices works as with real matrices, on the understanding that each ele-
ment of a complex matrix is a complex pair. So for example C[i,3j] gets you the complex pair at
row 1, column j of C, in the form of a 1 X 1 complex matrix.

If you wish to access just the real or imaginary part of a given element, or range of elements, you
can use the functions Re() or Im(), as in

scalar rij = Re(C[i,j1)

which gets you the real part of c;;.

In addition the dummy selectors real and imag can be used to assign to just the real or imaginary
component of a complex matrix. Here are two examples:

# replace the real part of C with random normals
C[real] = mnormal(rows(C), cols(C))

# set the imaginary part of C to all zeros
Climag] = 0
The replacement must be either a real matrix of the same dimensions as the target, or a scalar.

Further, the real and imag selectors may be combined with regular selectors to access specific
portions of a complex matrix for either reading or writing. Examples:

# retrieve the real part of a submatrix of C
matrix R = C[1:2,1:2][real]

# set the imaginary part of C[3,3] to y
C[3,31[imag] =y
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18.4 Operators

Most of the operators available for working with real matrices are also available for complex ones;
this includes the “dot-operators” which work element-wise or by “broadcasting” vectors. Moreover,
mixed operands are accepted, asinD = C + A where C is complex and A real; the result, D, will be
complex. In such cases the real operand is treated as a complex matrix with an all-zero imaginary
part.

The operators not defined for complex values are:
e Those that include the inequality tests “>” or “<”, since complex values as such cannot be
compared as greater or lesser (though they can be compared as equal or not equal).

e The (real) modulus operator (percent sign), as in x % y which gives the remainder on division
of x by y.
As for real matrices, the transposition operator “’” is available in both unary form, asin B = A’,
and binary form, as in C = A’B (transpose-multiply). But note that for complex A this means the
conjugate transpose, A, If you need the non-conjugated transpose you can use transp().

You may wish to note: although none of gretl’s explicit regression functions (or commands) accept
complex input you can calculate parameter estimates for a least-squares regression of complex Y
(T x 1) on complex X (T x k)viaB = X \ Y.

18.5 Functions

To give an idea of what works, and what doesn’t, for complex matrices, we’ll walk through the hansl
function-space using the categories employed in gretl’s online “Function reference” (under the Help
menu in the GUI program).

Linear algebra

The functions that accept complex arguments are: cholesky, det, Tdet, eigensym (for Hermitian
matrices), ffti, inv, ginv, hdprod, mexp, mlog, qrdecomp, rank, svd, tr, and transp. Note, how-
ever, that mexp and mlog require that the input matrix be diagonalizable, and cholesky requires a
positive definite Hermitian matrix.

In addition the new functions eigen and fft2 are complex-supporting versions of eigengen and
fft, respectively (see section 18.7 for details). And there are the complex-only functions ctrans,
which gives the conjugate transpose,! and schur for the Schur factorization.

Matrix building

Given what was said in section 18.2 above, several of the functions in this category should be
thought of as applying to the real or imaginary part of a complex matrix (for example, ones and
mnormal), and are of course usable in that way. However, some of these functions can be applied
to complex matrices as such, namely, diag, diagcat, Tower, upper, vec, vech and unvech.

Please note: when unvech is applied to a suitable real vector it produces a symmetric matrix, but
when applied to a complex vector it produces a Hermitian matrix.

The only functions not available for complex matrices are cnameset and rnameset. That is, you
cannot name the columns or rows of such matrices (although this restriction could probably be
lifted without great difficulty).

LThe transp function gives the straight (non-conjugated) transpose of a complex matrix.
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Matrix shaping

The functions that accept complex input are: cols, rows, mreverse, mshape, selifc, selifr and
trimr.

The functions msortby, sort and dsort are excluded for the reason mentioned in section 18.4.

Statistical

Supported for complex input: meanc, meanr, sumc, sumr, prodc and prodr. And that’s all.

Mathematical

In the matrix context, these are functions that are applied element by element. For complex input
the following are supported: Tog, exp and sqrt, plus all of the trigonometric functions with the
exception of atan2.

In addition there are the complex-only functions cmod (complex modulus, also accessible via abs),
carg (complex argument), conj (complex conjugate), Re (real part) and Im (imaginary part). Note
that carg(z) = atan2(y, x) for z = x + y i. Listing 18.1 illustrates usage of cmod and carg.

Transformations

In this category only two functions can be applied to complex matrices, namely cum and di ff.

18.6 File input/output

Complex matrices should be stored and retrieved correctly in the XML serialization used for gretl
session files (*.gret1).

The functions mwr1ite and mread work in two modes: binary mode if the filename ends with “. bin”
and text mode otherwise. Both modes handle complex matrices correctly if both the writing and
the reading are to be done by gretl, but for exchange of data with “foreign” programs text mode
will not work for complex matrices as a whole. The options are:

¢ In text mode, use mwrite and mread on the two parts of a complex matrix separately, and
reassemble the matrix in the target program.

e Use binary mode (on the whole matrix), if this is supported for the given foreign program.

At present binary mode transfer of complex matrices is supported for octave, python and julia.
Listing 18.2 shows some examples: we export a complex matrix to each of these programs in turn;
calculate its inverse in the foreign program; then verify that the result as imported back into gretl
is the same as that calculated in gretl.

18.7 Backward compatibility

Compatibility issues arise in two contexts, both related to the fact that gretl offered some degree
of support for complex matrices before they became full citizens of the hansl polity.

1. The functions fft (fast Fourier transform for real input) and eigengen (eigenvalues and/or
eigenvectors of a non-symmetric real matrix) returned complex matrices in what we may call
the “legacy” representation. In the case of fft and the eigenvalues from eigengen this took
the form of a regular gretl matrix with real values in the first (or odd-numbered) column(s) and
imaginary parts in the second (or even-numbered) column(s). Since calculating with such ma-
trices using the standard matrix operators would result in nonsense, we provided the tailored
functions cmult and cdiv.
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Listing 18.1: Variant representations of complex numbers. We picked 8 points on the unit circle in the
complex plane, so their modulus is constant and equal to 1. The PoTlar matrix below shows that the complex
argument is expressed in radians; multiplying by 180/7t gives degrees. The chk matrix verifies that we can
retrieve the orginal representation of the complex values from the polar form in either of the two ways
mentioned at the start of the chapter: z = |z| (cos 8 + i sin0) or z = |z| e'?. [Download V]|

# complex values in a + b*i form

scalar rp5 = sqrt(0.5)

matrix A = {1, rp5, 0, -rp5, -1, -rp5, 0, rp5}’
matrix B = {0, rp5, 1, rp5, 0, -rp5, -1, -rp5}’
matrix Z complex(A, B)

# calculate modulus and argument

matrix zmod = cmod(Z)

matrix theta = carg(Z)

matrix Polar = zmod ~ theta ~ (theta * 180/$pi)
cnameset(Polar, "modulus radians degrees")
printf "%12.4f\n", Polar

# reconstitute the original Z matrix in two ways
matrix Z1 = zmod .* complex(cos(theta), sin(theta))
matrix Z2 = zmod .* exp(complex(0, theta))

matrix chk = Z ~ 71 ~ 72

print chk

Printing of PoTlar and chk

modulus radians degrees
1.0000 0.0000 0.0000
1.0000 0.7854 45.0000
1.0000 1.5708 90.0000
1.0000 2.3562 135.0000
1.0000 3.1416 180.0000
1.0000 -2.3562  -135.0000
1.0000 -1.5708 -90.0000
1.0000 -0.7854 -45.0000
1.00000 + 0.000007 1.00000 + 0.000007 1.00000 + 0.000001
0.70711 + 0.70711i 0.70711 + 0.70711i 0.70711 + 0.70711i
0.00000 + 1.000001 0.00000 + 1.000001 0.00000 + 1.000001
-0.70711 + 0.70711i -0.70711 + 0.70711i -0.70711 + 0.70711i
-1.00000 + 0.000007i -1.00000 + 0.0000071 -1.00000 + 0.000001
-0.70711 - 0.70711i -0.70711 - 0.70711i -0.70711 - 0.70711i
0.00000 - 1.000001 0.00000 - 1.000001 0.00000 - 1.000001
0.70711 - 0.70711i 0.70711 - 0.707111 0.70711 - 0.70711i
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Listing 18.2: Exporting and importing complex matrices [Download v]

set seed 34756

matrix C = complex(mnormal(3,3), mnormal(3,3))

D = inv(O)
mwrite(C, "C.bin", 1)

foreign language=octave
C = gretl_loadmat(’C.bin’);
gretl_export(inv(C), ’oct_D.bin’);
end foreign

oct_D = mread("oct_D.bin", 1)
eval D - oct_D

foreign language=python
import numpy as np
C = gretl_loadmat(’C.bin’)

gretl_export(np.linalg.inv(C), ’py_D.bin’)

end foreign

py_D = mread("py_D.bin", 1)
eval D - py_D

foreign language=julia
C = gretl_Toadmat("C.bin")
gretl_export(inv(C), "j1_D.bin")
end foreign

j1_D = mread("j1_D.bin", 1)
eval D - j1_D
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In the case of complex eigenvectors from eigengen—well, you probably don’t want to know,
but if you do, consult the help text for eigengen; they were not easy for a user to handle!

2. The function packages cmatrix and ghosts. These were developed to support frequency-
domain analysis via gretl in the absence of built-in complex matrix functionality. The cmatrix
package was needed as an dependency for ghosts (multivariate spectral analysis).

So what happens with these functions and function packages under the new regime? The resolution
on the two built-in functions is this:

o fft and eigengen continue to behave exactly as before. They do not accept complex input
and they produce old-style output. In the documentation they are marked as legacy functions,
not for use in newly written hansl code.

e We have added new counterpart functions, fft2 and eigen. These accept either real or
complex input and they produce new-style complex output in both cases.

On the affected packages: cmatrix is no longer required, and is not be supported any more. But
an updated version of ghosts, which uses gretl’s native complex functionality, is available.

We might mention that the ffti function (inverse Fourier transform) is backward compatible: the
new functionality is just a superset of the old. The input must be complex, and is accepted by
ffti in either the legacy or the new format. The output is real if the input is Hermitian, which in
this case means that the first (zero-frequency) row is real and the remaining rows are conjugate
symmetrical about their mid-point. That’s the only case that can arise when ffti is used on output
from the old fft (which only accepted real input). Otherwise (non-Hermitian complex input, which
can arise only under the new scheme) the output will be complex, and in the new format.



Chapter 19

Calendar dates

19.1 Introduction

Any software that aims to handle time-series data must have a good built-in calendar. This is fairly
straightforward in the current era, with the Gregorian calendar now used universally for the dating
of socioeconomic observations. It is not so straightforward, however, when dealing with historical
data recorded prior to the adoption of the Gregorian calendar in place of the Julian, an event which
first occurred in the principal Catholic countries in 1582 but which took place at different dates in
different countries over a span of several centuries.

Gretl, like most data-oriented software, uses the Gregorian calendar by default for all dates, thereby
ensuring that dates are all consecutive (the latter being a requirement of the ISO 8601 standard for
dates and times).!

As readers probably know, the Julian calendar adds a leap day (February 29) on each year that is
divisible by 4 with no remainder. But this over-compensates for the fact that a 365-day year is too
short to keep the calendar synchronized with the seasons. The Gregorian calendar introduced a
more complex rule which maintains better synchronization, namely, each year divisible by 4 with
no remainder is a leap year unless it’s a centurial year (e.g. 1900) in which case it’s a leap year only
if it is divisible by 400 with no remainder. So the years 1600 and 2000 were leap years on both
calendars, but 1700, 1800, and 1900 were leap years only on the Julian calendar. While the average
length of a Julian year is 365.25 days, the Gregorian average is 365.2425 days.

The fact that the Julian calendar inserts leap days more frequently means that the Julian date
progressively (although very slowly) falls behind the Gregorian date. For example, February 18
2017 (Gregorian) is February 5 2017 on the Julian calendar. On adoption of the Gregorian calendar
it was therefore necessary to skip several days. In England, where the transition occurred in 1752,
Wednesday September 2 was directly followed by Thursday September 14.

In comparing calendars one wants to refer to a given day in terms that are not specific to either
calendar —but how to define a “given day”? This is accomplished by a count of days following some
definite event. Astronomers use the “Julian Day,” whose count starts with a particular coincidence
of astronomical cycles in the year known to the Gregorian calendar (if one extrapolates it backwards
in time) as 4714 BC. Gretl uses a similar construction as a fulcrum, but the count of what we call the
“epoch day” starts at 1 on January 1, AD 1 (that is, the first day of the Common Era), on the proleptic
Gregorian calendar.? This is also the convention used by the GLib library, on which gretl depends
for most of its calendrical calculation. Since GLib represents epoch days as unsigned integers, this
means that gretl does not support dates prior to the Common— or, if you prefer, Christian —Era.

19.2 Calendrical functions

Gretl’s calendrical functions are documented in the Gretl Command Reference. In this section we
say a bit more about how these functions relate to each other, and how they may be used to carry
out some specific tasks.

LGretl was not consistent in this regard prior to version 2017a: leap years were taken to be as defined by the Julian
calendar prior to the adoption of the Gregorian calendar by Britain and its colonies in 1752.

2The term “proleptic,” as applied to a calendar, indicates that it is extrapolated backwards or forwards relative to its
period of actual historical use.
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A first point to note is that a daily date has three possible representations within gretl. Two
are associated with the ISO 8601 standard, namely the “extended” representation, YYYY-MM-DD,
as for example 2017-02-19, and the “basic” representation, YYYYMMDD (for example 20170219). As
mentioned above, such dates are by default taken to be relative to the (possibly proleptic) Gregorian
calendar. The third representation is as an “epoch day” (see above), for example 736379, which is
calendar-independent and can therefore be used in converting from one calendar to another.

Decomposing a series of “basic” dates

To generate from a series of dates in ISO 8601 basic format distinct series holding year, month and
day, the function isoconv can be used. This function should be passed the original series followed
by “pointers to” the series to be filled out. For example, if we have a series named dates in the
prescribed format we might do

series y, m, d
isoconv(dates, &y, &m, &d)

This is mostly just a convenience function: provided the dates input is valid on the (possibly
proleptic) Gregorian calendar it is equivalent to:

series y = floor(dates/10000)
series m floor((dates-10000*y)/100)
series d = dates - 10000*y - 100%*m

However, there is some “value added”: isoconv checks the validity of the dates input. If the
implied year, month and day for any dates observation do not correspond to a valid Gregorian
date in the Common Fra,3 then all the derived series will have value NA at that observation.

The isoconv function can also handle Julian dates, should anyone have need for that facility. The
convention is that if the negative of an ISO 8601 basic date is given as an argument, the date is
taken to be on the (possibly proleptic) Julian calendar. Since dates BCE are not supported by gretl,
hopefully this should not give rise to ambiguity. The only difference from the standard usage of
isoconv is that Julian-only dates, such as 17000229, are recognized as valid. So, for example,

series y, m, d
isoconv(-dates, &y, &m, &d)

will accept a dates value of 17000229, giving (y = 1700, m = 2, d = 29), while this would give NA
values for year, month and day on the default Gregorian calendar.

Obtaining and using epoch days

To convert from a Gregorian or Julian date to the corresponding epoch day, you can use the
epochday function, which takes as arguments year, month and day on the given calendar. Sim-
ilarly to isoconv, the convention is that Gregorian dates are assumed unless the year is given in
the negative to flag a Julian date. The following code fragment,

edg
edj

epochday(1700,1,1)
epochday(-1700,1,1)

produces edg = 620548 and edj = 620558, indicating that the two calendars differed by 10 days at
the point in time known as January 1, 1700, on the proleptic Gregorian calendar.

Taken together with the isodate and juldate functions (which each take an epoch day argument
and return an ISO 8601 basic date on, respectively, the Gregorian and Julian calendars), epochday

3For example, the implied month is not in the range 1-12, or the implied day is not in the range of 1 to the number
of days in the month, taking account of Gregorian leap years.
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can be used to convert between the two calendars. For example, what was the date in England (still
on the Julian calendar) on the day known to Italians as June 26, 1740 (Italy having been on the
Gregorian calendar since October 1582)?

ed = epochday(1740,6,26)
english_date = juldate(ed)
printf "%.0f\n", english_date

We find that the English date was 17400615, the 15th of June. Working in the other direction, what
Italian date corresponded to the 5th of November, 1740, in England?

ed = epochday(-1740,11,5)
italian_date = isodate(ed)
printf "%.0f\n", italian_date

Answer: 17401116; Guy Fawkes night in 1740 occurred on November 16 from the Italian point of
view.

A further—and perhaps more practical—use of epoch days is checking whether daily data are
complete. Suppose we have what purport to be 7-day daily data on the Gregorian calendar with
a starting date of 2015-01-01 and an ending date of 2016-12-31. How many observations should
there be?

edl epochday(2015,1,1)
ed?2 epochday(2016,12,31)
n=-ed2-edl +1

We find that there should be n = 731 observations; if there are fewer, there’s something missing.
If the data are supposed to be on a 5-day week (skipping Saturday and Sunday) or 6-day week
(skipping Sunday alone) the calculation is more complicated; in this case we can use the dayspan
function, providing as arguments the epoch-day values for the first and last dates and the number
of days per week:

edl epochday(2015,1,1)
ed2 epochday(2016,12,30)
n = dayspan(edl, ed2, 5)

We discover that there were n = 522 weekdays in this period.

Note that while ISO 8601 basic dates can be used for easy comparison (which of two dates, on a
given calendar, refers to a later day?), one needs epoch days to carry out fully fledged “dates arith-
metic.” Epoch days are always consecutive by construction, but 8-digit basic dates are consecutive
only within a given month; they advance by 101 minus (days in previous month) at the start of each
month other than January and by 8870 at the start of each year.

Miscellaneous functions

Two additional functions that by default operate on the Gregorian calendar can be induced to
work on the Julian by the trick mentioned above, namely giving the negative of the year. These
are weekday (which takes arguments year, month and day) and monthlen (which takes arguments
month, year and days per week). Thus for example

eval weekday(-1700,2,29)
gives 4, indicating that Julian February 29, 1700 was a Thursday. And
eval monthlen(2,-1900,5)

gives 21, indicating that there were 21 weekdays in Julian February 1900.
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19.3 Working with pre-Gregorian dates

In this section we address the problem of constructing within gretl a calendar which agrees with
the actual historical calendar prior to the switch to Gregorian dating. Most people will have no
use for this, but researchers working with archival data may find it helpful: it would be tricky and
error-prone to enter on the Gregorian calendar data whose dates are given on the Julian at source.

We’ll consider the trickiest case, namely a calendar which includes the day on which the Julian to
Gregorian switch occurred. If we can handle this, it should be relatively simple to handle a purely
Julian calendar. Our illustration will be England in 1752 (a similar analysis could be done for Spain
in 1582 or Greece in 1923). A solution is presented in Listing 19.1.

The first step is to find the epoch day corresponding to the Julian date 1752-01-01 (which turns
out to be 639551). Then we can create a series of epoch days, from which we get both Julian and
Gregorian dates for 355 days starting on epoch day 639551. Note, 355 days because this was a
short year: it was a leap year, but 11 days were skipped in September in making the transition to
the Gregorian calendar. We can then construct a series, hcal, which switches calendar at the right
historical point.

Listing 19.1: Historical calendar for Britain in 1752 [Download v]

# 1752 was a short year on the British calendar!
nulldata 355

# give a negative year to indicate Julian date
ed0 = epochday(-1752,1,1)

# consistent series of epoch day values

series ed = ed0 + index - 1

# Julian dates as YYYYMMDD

series jdate = juldate(ed)

# Gregorian dates as YYYYMMDD

series gdate = isodate(ed)

# Historical: cut-over in September

series hcal = ed > epochday(-1752,9,2) ? gdate : jdate
# And Tlet’s take a Took

print ed jdate gdate hcal -o

Partial output:

ed jdate gdate hcal

1 639551 17520101 17520112 17520101

2 639552 17520102 17520113 17520102
245 639795 17520901 17520912 17520901
246 639796 17520902 17520913 17520902
247 639797 17520903 17520914 17520914
248 639798 17520904 17520915 17520915
355 639905 17521220 17521231 17521231

Notice that although the series hcal contains the correct historical calendar (in “basic” form), the
observation labels (in the first column of the output) are still just index numbers. It may be prefer-
able to have historical dates in that role. To achieve this we can decompose the hcal series into
year, month and day, then use the special genr markers apparatus (see chapter 4). Suitable code
along with partial output is shown in Listing 19.2.


http://gretl.sourceforge.net/guidefiles/example-19.1.inp
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Listing 19.2: Continuation of Britain 1752 example [Download V]
Additional input:

series y, m, d

isoconv(hcal, &y, &m, &d)

genr markers = "%04d-%02d-%02d", y, m, d
print ed jdate gdate hcal -o

Partial output:

ed jdate gdate hcal
1752-01-01 639551 17520101 17520112 17520101
1752-01-02 639552 17520102 17520113 17520102
1752-09-01 639795 17520901 17520912 17520901
1752-09-02 639796 17520902 17520913 17520902
1752-09-14 639797 17520903 17520914 17520914
1752-09-15 639798 17520904 17520915 17520915
1752-12-31 639905 17521220 17521231 17521231

19.4 Year numbering

A further complication in dealing with archival data is that the year number has not always been
advanced on January 1; for example in Britain prior to 1752, March 25 was taken as the start of
the new year. On gretl’s calendar (whether Julian or Gregorian) the year number always advances
on January 1, but it’s possible to construct observation markers following the old scheme. This is
illustrated for the year 1751 (as we would now call it) in Listing 19.3.

Listing 19.3: Historical calendar for England in 1751 [Download v]
Input:

nulldata 365 # a common year

ed0 = epochday(-1751,1,1)

edl = epochday(-1751,3,25)

series ed = ed0 + index - 1

series jdate = juldate(ed)

series y, m, d

isoconv(jdate, &y, &m, &d)

y =ed <edl ?y-1:y

genr markers "%04d-%02d-%02d", y, m, d
print index -o

Partial output:

1750-01-01 1
1750-01-02 2
1750-01-03 3
1750-03-23 82
1750-03-24 83
1751-03-25 84
1751-03-26 85

1751-12-31 365


http://gretl.sourceforge.net/guidefiles/example-19.2.inp
http://gretl.sourceforge.net/guidefiles/example-19.3.inp

Chapter 20

Handling mixed-frequency data

20.1 Basics

In some cases one may want to handle data that are observed at different frequencies, a facility
known as “MIDAS” (Mixed Data Sampling). A common pairing includes GDP, usually available quar-
terly, and industrial production, often available monthly. The most common context when this
feature is required is specification and estimation of MIDAS models (see Chapter 41), but other
cases are possible.

A gretl dataset formally handles only a single data frequency, but we have adopted a straightfor-
ward means of representing nested frequencies: a higher frequency series xp is represented by a
set of m series, each holding the value of xp in a sub-period of the “base” (lower-frequency) period
(where m is the ratio of the higher frequency to the lower).

This is most easily understood by means of an example. Suppose our base frequency is quarterly
and we wish to include a monthly series in the analysis. Then a relevant fragment of the gretl
dataset might look as shown in Table 20.1. Here, gdpc96 is a quarterly series while indpro is
monthly, so m = 12/4 = 3 and the per-month values of indpro are identified by the suffix _mn,
n=3,2,1.

gdpc96 indpro_m3 indpro_m2 indpro_ml

1947:1 1934.47 14.3650 14.2811 14.1973
1947:2 1932.28 14.3091 14.3091 14.2532
1947:3 1930.31 14.4209 14.3091 14.2253
1947:4 1960.70 14.8121 14.7562 14.5606
1948:1 1989.54 14.7563 14.9240 14.8960
1948:2 2021.85 15.2313 15.0357 14.7842

Table 20.1: A slice of MIDAS data

To recover the actual monthly time series for indpro one must read the three relevant series right-
to-left by row. At first glance this may seem perverse, but in fact it is the most convenient setup
for MIDAS analysis. In such models, the high-frequency variables are represented by lists of lags,
and of course in econometrics it is standard to give the most recent lag first (x;—1,x;-2,...).

One can construct such a dataset manually from “raw” sources using hansl’s matrix-handling meth-
ods or the join command (see Section 20.6 for illustrations), but we have added native support for
the common cases shown below.

base frequency higher frequency

annual quarterly or monthly
quarterly monthly or daily
monthly daily

The examples below mostly pertain to the case of quarterly plus monthly data. Section 20.6 has
details on handling of daily data.
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A mixed-frequency dataset can be created in either of two ways: by selective importation of series
from a database, or by creating two datasets of different frequencies then merging them.

Importation from a database

Here’s a simple example, in which we draw from the fedstl1 (St Louis Fed) database which is
supplied in the gretl distribution:

clear

open fedstl.bin

data gdpc96

data indpro --compact=spread
store gdp_indpro.gdt

Since gdpc96 is a quarterly series, its importation via the data command establishes a quarterly
dataset. Then the MIDAS work is done by the option --compact=spread for the second invocation
of data. This “spreads” the series indpro—which is monthly at source—into three quarterly
series, exactly as shown in Table 20.1.

Merging two datasets

In this case we consider an Excel file provided by Eric Ghysels in his MIDAS Matlab Toolbox,!
namely mydata.x1sx. This contains quarterly real GDP in Sheetl and monthly non-farm payroll
employment in Sheet2. A hansl script to build a MIDAS-style file named gdp_payrol1_midas.gdt
is shown in Listing 20.1.

Listing 20.1: Building a gretl MIDAS dataset via merger [Download v|

# sheet 2 contains monthly employment data

open MIDASv2.0/mydata.x1sx --sheet=2

rename VALUE payems

dataset compact 4 spread

# 1imit to the sample range of the GDP data

smpl 1947:1 2011:2

setinfo payems_m3 --description="Non-farm payroll employment, month 3 of quarter"
setinfo payems_m2 --description="Non-farm payroll employment, month 2 of quarter"
setinfo payems_ml --description="Non-farm payroll employment, month 1 of quarter"
store payroll_midas.gdt

# sheet 1 contains quarterly GDP data

open MIDASv2.0/mydata.x1sx --sheet=1

rename VALUE qgdp

setinfo qgdp --description="Real quarterly US GDP"
append payroll_midas.gdt

store gdp_payroll_midas.gdt

Note that both series are simply named VALUE in the source file, so we use gretl’s rename command
to set distinct and meaningful names. The heavy lifting is done here by the line

dataset compact 4 spread

LSee http://eghysels.web.unc.edu/ for links.


http://gretl.sourceforge.net/guidefiles/example-20.1.inp
http://eghysels.web.unc.edu/

Chapter 20. Handling mixed-frequency data 167

which tells gretl to compact an entire dataset (in this case, as it happens, just containing one
series) to quarterly frequency using the “spread” method. Once this is done, it is straightforward
to append the compacted data to the quarterly GDP dataset.

We will put an extended version of this dataset (supplied with gretl, and named gdp_midas.gdt)
to use in subsequent sections.

20.2 The notion of a “MIDAS list”

In the following two sections we’ll describe functions that (rather easily) do the right thing if you
wish to create lists of lags or first differences of high-frequency series. However, we should first
be clear about the correct domain for such functions, since they could produce the most diabolical
mash-up of your data if applied to the wrong sort of list argument—for instance, a regular list
containing distinct series, all observed at the “base frequency” of the dataset.

So let us define a MIDAS list: this is a list of m series holding per-period values of a single high-
frequency series, arranged in the order of most recent first, as illustrated above. Given the dataset
shown in Table 20.1, an example of a correctly formulated MIDAS list would be

Tist INDPRO = indpro_m3 indpro_m2 indpro_ml

Or, since the monthly observations are already in the required order, we could define the list by
means of a “wildcard”:

Tist INDPRO = indpro_m*

Having created such a list, one can use the setinfo command to tell gretl that it’s a bona fide
MIDAS list:

setinfo INDPRO --midas

This will spare you some warnings that gretl would otherwise emit when you call some of the
functions described below. This step should not be necessary, however, if the series in question
are the product of a compact operation with the spread parameter.

Inspecting high-frequency data

The layout of high-frequency data shown in Table 20.1 is convenient for running regressions, but
not very convenient for inspecting and checking such data. We therefore provide some methods
for displaying MIDAS data at their “natural” frequency. Figure 20.1 shows the gretl main window
with the gdp_midas dataset loaded, along with the menu that pops up if you right-click with the
payems series highlighted. The items “Display values” and “Time series plot” show the data on
their original monthly calendar, while the “Display components” item shows the three component
series on a quarterly calendar, as in Table 20.1.

These methods are also available via the command line. For example, the commands
Tist PAYEMS = payems_*

print PAYEMS --byobs --midas
hfplot PAYEMS --with-1lines --output=display

produce a monthly printout of the payroll employment data, followed by a monthly time-series
plot. (See section 20.5 for more on hfplot.)



Chapter 20. Handling mixed-frequency data 168

— gretl x
File Tools Data View Add Sample Model Help =
gdp_midas.gdt
ID # Variable name Descriptive label

0 const

1 qgdp Real quarterly US GDP

2 Id_gqgdp 100*Idiff(ggdp)

E] payems_m3 Non-farm payroll employment, menth 3 of quarter

4 payems_m2 Non-farm payroll employment, month 2 of quarter

5 payems_m1l Non-farm payroll employment, month 1 of quarter

6 Id_payems_m3 = high-frequency log difference of payems_m3

7 Id_payems_m2 = high-frequency log differencdl sl EVREI =S

8 Id_payems_m1l = high-frequency log difference “Time series plot
Add logs...
Add differences...
Display components
Edit components
Delete components

Quarterly: Full range 1947:1 - 2011:]
- L Define new variable...
El fx @ |_ B = B . Define list

Figure 20.1: MIDAS data menu

20.3 High-frequency lag lists

A basic requirement of MIDAS is the creation of lists of high-frequency lags for use on the right-
hand side of a regression specification. This is possible, but not very convenient, using the long-
standing behavior of gretl’s Tags function; it is made easier by a dedicated variant of that function
described below.

For illustration we’ll consider an example presented in Ghysels’ Matlab implementation of MIDAS:
this uses 9 monthly lags of payroll employment, starting at lag 3, in a model for quarterly GDP.
The estimation period for this model starts in 1985Q1. At this observation, the stipulation that we
start at lag 3 means that the first (most recent) lag is employment for October 1984,% and the 9-lag
window means that we need to include monthly lags back to February 1984. Let the per-month
employment series be called x_m3, x_m2 and x_m1, and let (quarterly) lags be represented by (-1),
(-2) and so on. Then the terms we want are (reading left-to-right by row):

. x_ml(-1)
x_m3(-2) x_m2(-2) x_ml(-2)
x_m3(-3) x_m2(-3) x_ml(-3)
x_m3(-4) x_m2(-4)

We could construct such a list in gretl using the following standard syntax. (Note that the third
argument of 1 to Tags below tells gretl that we want the terms ordered “by lag” rather than “by
variable”; this is required to respect the order of the terms shown above.)

Tist X = x_m*

# create lags for 4 quarters, "by Tag"

Tist XL = lags(4,X,1)

# convert the Tist to a matrix

matrix tmp = XL

# trim off the first two elements, and the Tlast
tmp = tmp[3:11]

2That is what Ghysels means, but see the sub-section on “Leads and nowcasting” below for a possible ambiguity in
this regard.
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# and convert back to a l